- #1
the_fater
- 4
- 0
- Homework Statement
- Consider two homogeneously charged solid hemispheres with radius R separated in the x-y-plane by a negligible slit. The upper hemisphere has a total charge of +Q, and the lower hemisphere has a total charge of −Q.
1. Write down an expression for the volume charge density ρ of the two hemispheres.
2. Calculate the spherical and the Cartesian dipole moment.
- Relevant Equations
- electric dipole moment ##\vec P = \int \rho(\vec r^{'}) r^{'} \, dv^{'}##
My thought: First of all, I find the upper hemisphere (with a total charge +Q): ##ρ(\vec r)=\frac {V} {Q}## where V is the volume of the upper hemisphere = ## \frac {2} {3} \pi R^3##. Secondly, find the lower hemisphere (with a total charge −Q): ##ρ(\vec r)=\frac {V} {Q}## where V is the volume of the lower hemisphere = ## \frac {2} {3} \pi R^3##. I suggest that these expressions represent the volume charge densities for the upper and lower hemispheres. However, I am not entirely sure about it, so I am uncertain if I can find the correct dipole moments in Cartesian and spherical coordinates. Thanks for any help!