I Name of distance to nearest multiple of n function?

  • I
  • Thread starter Thread starter The Bill
  • Start date Start date
  • Tags Tags
    Function Multiple
AI Thread Summary
The function mav(a,n) calculates the Euclidean distance from an integer a to the nearest multiple of n. It is computed by taking the modulus of a with n, resulting in b, and then returning the lesser value between b and n-b. The creator is unsure if this function has a standardized name or notation, as searches yield unrelated results in n-adic and p-adic contexts. There is also a suggestion that a more efficient method for computing this function may exist. The discussion seeks clarity on the function's nomenclature and potential optimization techniques.
The Bill
Messages
373
Reaction score
146
TL;DR Summary
Is there a common name and notation for the function which takes in integers a and n, computes b= mod n, and outputs the lesser of b or n-b?
I've defined this function to clean up some pages of work I've been doing on relations of integers modulo n. Let's call it mav(a,n) for now. mav(a,n) for integers a and n is equal to the Euclidean distance from a to the nearest multiple of n.

To compute it in programming languages I've been just making a function that takes in integers a and n, computes b= mod n, and outputs the lesser of b or n-b.

I feel like I might be forgetting something from undergrad. I feel like this function may already have a standardized name and notation I'm just forgetting. It acts like "an absolute value in the integers modulo n," but whenever I search for that or notation which might look like that, I get results for n-adic and p-adic integers and analysis instead.

I also feel like there may be an easier functional method of computing it than I wrote in the second paragraph above.

Any thoughts?
 
Mathematics news on Phys.org
I've never heard of something specific for that.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top