- #1
- 4,807
- 32
- TL;DR Summary
- naming convention for "functional variance"
For a continuous function f:[a,b]-->R there is a well-known notion of "functional mean"
$$
\mu[f] = \frac{1}{b-a}\int_a^bf(x)\,dx.
$$
I am wondering if there is a name for the corresponding notion of "functional variance", i.e. the quantity
$$
\frac{1}{b-a}\int_a^b(f(x)-\mu[f])^2\,dx.
$$
?? Thanks. Also, does this quantity play a role somewhere in the literature? I'm writing a paper that involves this thing but google is very useless at answering my question since it just spits out pages upon pages about the variance of a continuous random variable.
$$
\mu[f] = \frac{1}{b-a}\int_a^bf(x)\,dx.
$$
I am wondering if there is a name for the corresponding notion of "functional variance", i.e. the quantity
$$
\frac{1}{b-a}\int_a^b(f(x)-\mu[f])^2\,dx.
$$
?? Thanks. Also, does this quantity play a role somewhere in the literature? I'm writing a paper that involves this thing but google is very useless at answering my question since it just spits out pages upon pages about the variance of a continuous random variable.
Last edited by a moderator: