MHB Nano's question at Yahoo Answers regarding Newton's Law of Cooling

AI Thread Summary
Sandy's ceramics shop requires her to wait until her kiln cools to 155°F after firing at 800°F. According to Newton's Law of Cooling, the cooling rate is proportional to the temperature difference between the kiln and the ambient temperature of 70°F. Given that the kiln reaches 700°F in 10 minutes, calculations show that it will take approximately 146 minutes to cool to 155°F. The mathematical derivation involves integrating the cooling equation and using the known temperature points. Thus, the correct waiting time before opening the kiln is 146 minutes.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

I need help with this problem !?

Sandy manages a ceramics shop and uses a 800°F kiln to fire ceramic greenware. After turning off her kiln, she must wait until its temperature gauge reaches 155°F before opening it and removing the ceramic pieces. If room temperature is 70°F and the gauge reads 700°F in 10 minutes, how long must she wait before opening the kiln? Assume the kiln cools according to Newton's Law of Cooling.
(Round you anwer to the nearest whole minute)
a) 512 mins B)94 mins c)369 mins D)146 mins

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Nano,

Newton's law of Cooling states that the time rate of change of the temperature $T$ of an object is proportional to the difference between the ambient temperature $M$ and the temperature of the object. Stated mathematically, this is:

$$\frac{dT}{dt}=-k(T-M)$$ where $$T(0)=T_0,\,0<k\in\mathbb{R}$$ and $$T>M$$.

The ODE is separable and may be written:

$$\frac{1}{T-M}\,dT=-k\,dt$$

Integrating, using the boundaries, and dummy variables of integration, we find:

$$\int_{T_0}^{T(t)}\frac{1}{u-M}\,du=-k\int_0^t v\,dv$$

$$\ln\left(\frac{T(t)-M}{T_0-M} \right)=-kt$$

If we know another point $$\left(t_1,T_1 \right)$$ we may now find $k$:

$$-k=\frac{1}{t_1}\ln\left(\frac{T_1-M}{T_0-M} \right)$$

Hence, we find:

$$t=\frac{t_1\ln\left(\frac{T(t)-M}{T_0-M} \right)}{\ln\left(\frac{T_1-M}{T_0-M} \right)}$$

Using the following given data:

$$t_1=10,\,T(t)=155,\,M=70,\,T_0=800,\,T_1=700$$

we find:

$$t=\frac{10\ln\left(\frac{155-70}{800-70} \right)}{\ln\left(\frac{700-70}{800-70} \right)}=\frac{10\ln\left(\frac{17}{146} \right)}{\ln\left(\frac{63}{73} \right)}\approx145.9628332694268$$

Therefore d) is the correct answer.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top