- #1
cathalcummins
- 46
- 0
The way I am being taught in my course is that instead of
!s_1= 1/2, m_1 =1/2 ; s_2= 1/2, m_2 =1/2 > = !+ + >
!s_1= 1/2, m_1 =1/2 ; s_2= 1/2, m_2 =-1/2 > = !+ - >
!s_1= 1/2, m_1 =-1/2 ; s_2= 1/2, m_2 =1/2 > = !- + >
!s_1= 1/2, m_1 =-1/2 ; s_2= 1/2, m_2 =-1/2 > = !- - >
We have
¦s=1,m_z=1>= ¦++>
¦s=1,m_z=0>= 1/sqrt(2) (¦+->+¦-+>)
¦s=1,m_z=-1>= ¦++>
¦s=0,m_z=0>= 1/sqrt(2) (¦+->-¦-+>)
I understand the spin-1 triplet. My question is "how do you compute ¦+->-¦-+> to get composite s=0,m=0". Is it essentially
1/sqrt(2) (¦1 0> - ¦1 0> )= ¦0 0>
?
Thanks.
!s_1= 1/2, m_1 =1/2 ; s_2= 1/2, m_2 =1/2 > = !+ + >
!s_1= 1/2, m_1 =1/2 ; s_2= 1/2, m_2 =-1/2 > = !+ - >
!s_1= 1/2, m_1 =-1/2 ; s_2= 1/2, m_2 =1/2 > = !- + >
!s_1= 1/2, m_1 =-1/2 ; s_2= 1/2, m_2 =-1/2 > = !- - >
We have
¦s=1,m_z=1>= ¦++>
¦s=1,m_z=0>= 1/sqrt(2) (¦+->+¦-+>)
¦s=1,m_z=-1>= ¦++>
¦s=0,m_z=0>= 1/sqrt(2) (¦+->-¦-+>)
I understand the spin-1 triplet. My question is "how do you compute ¦+->-¦-+> to get composite s=0,m=0". Is it essentially
1/sqrt(2) (¦1 0> - ¦1 0> )= ¦0 0>
?
Thanks.