MHB Natural frequency of a crane dropping a car

AI Thread Summary
The discussion focuses on calculating the natural frequency of a crane's electromagnet after dropping a car. The natural frequency is determined using the mass of the electromagnet and the car, specifically considering the mass right after release. The motion of the electromagnet is modeled as a simple harmonic oscillator, with the equation reflecting its starting position. Maximum tension in the cable occurs when the mass is at rest, aligning with the maximum acceleration criterion. The participant ultimately resolved the calculations independently.
Dustinsfl
Messages
2,217
Reaction score
5
An electromagnet weighing \(3000\) lb is at rest while holding an automobile of weight \(2000\) lb in a junkyard. The electric current is turned off, and the automobile is dropped. Assuming that the crane and the supporting cable have an equivalent spring constant of \(10000\) lb/in, find the following:
(1)the natural frequency of vibration of the electromagnet, (2)the resulting motion of the electromagnet, and (3)the maximum tension developed in the cable during motion.

For (1), would it be \(\omega_n = \sqrt{\frac{10000}{5000}}\) or \(\omega_n = \sqrt{\frac{10000}{3000}}\)? Do we look at the mass right before release or right after release?
For (2), this is a simple harmonic oscillator so \(x(t) = A\cos(\omega_nt) + B\sin(\omega_nt)\).
Not sure how to do (3)
 
Mathematics news on Phys.org
For (1), you would look at the mass right after release, since this is the mass that is being accelerated by the cable.
For (2), it would be $$x(t)=-B \cos (\omega t)$$, since the mass starts from the lowest point at t=0.
For (3), remember that the maximum force (tension) occurs when the acceleration is maximum.
Can you proceed?
 
Alternatively for (3), the maximum tension will occur when the mass is at rest (this is just a restatement of the maximum acceleration criterion).
 
jacobi said:
For (1), you would look at the mass right after release, since this is the mass that is being accelerated by the cable.
For (2), it would be $$x(t)=-B \cos (\omega t)$$, since the mass starts from the lowest point at t=0.
For (3), remember that the maximum force (tension) occurs when the acceleration is maximum.
Can you proceed?

Thanks but I figured out everything yesterday.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top