MHB Natural Log Rule: $\frac{a}{b}=-\frac{b}{a}$?

AI Thread Summary
The discussion confirms that the natural logarithm of a fraction can be expressed as the negative logarithm of its reciprocal, specifically stating that $\ln\left(\frac{a}{b}\right)$ equals $-\ln\left(\frac{b}{a}\right)$. Participants agree that this relationship holds true, illustrating that $\ln(a) - \ln(b)$ simplifies to $\ln\left(\frac{a}{b}\right)$ and can also be represented as $-\left[\ln(b) - \ln(a)\right]$. The conversation emphasizes that inserting a negative sign in front of the logarithm effectively flips the fraction. Overall, the properties of logarithms regarding fractions and their reciprocals are clearly established.
tmt1
Messages
230
Reaction score
0
If I have $\ln\left({a}\right) - \ln\left({b}\right)$ that would equal $\ln\left({\frac{a}{b}}\right)$ or $-(\ln\left({b}\right) - \ln\left({a}\right))$ which is also $- \ln\left({\frac{b}{a}}\right)$. So does this mean $\ln\left({\frac{a}{b}}\right)$ equals $- \ln\left({\frac{b}{a}}\right)$?
 
Mathematics news on Phys.org
Yes, you are correct...another way to think of it is:

$$\log_a\left(\frac{b}{c}\right)=\log_a\left(\left(\frac{c}{b}\right)^{-1}\right)=-\log_a\left(\frac{c}{b}\right)$$
 
tmt said:
If I have $\, \ln (a) - \ln (b)\,$ that would equal $\,\ln\left({\dfrac{a}{b}}\right)\,$ or $\,-\left[\ln\left({b}\right) - \ln\left({a}\right)\right]\;$ which is also $\,- \ln\left({\dfrac{b}{a}}\right)$
So does this mean $\,\ln\left({\dfrac{a}{b}}\right)\,$ equals $\,- \ln\left({\dfrac{b}{a}}\right)\:$?
If you discovered this while 'fooling around' with logs, good workl

Yes indeed!
If you have the log of a fraction, inserting a minus in front
will 'flip' the fraction.

That is: -\ln\left(\frac{a}{b}\right) \:=\:\ln\left(\frac{b}{a}\right)

 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top