Necessity of the field viewpoint

  • I
  • Thread starter simonjech
  • Start date
  • Tags
    Field
In summary, the use of field operators in relativistic quantum mechanics is necessary due to several reasons. One reason is the lack of finite-dimensional unitary representations of the Poincaré group. Additionally, fields allow for the fulfillment of causality and locality, which cannot be achieved in the first-quantization formalism. Furthermore, in relativistic quantum mechanics, particles can be destroyed and created during collisions, which is more easily described using a quantum field theory. The use of bosonic commutation relations for field operators also ensures a positive definite Hamiltonian.
  • #1
simonjech
Gold Member
12
5
I am learning QFT rn, so the question that I naturaly ask myself often is why do we have to use field operators in relativistic quantumn theory instead of operators with finite number of degrees of freedom which are used in non-relativistic quantumn mechanics?
One of the reasons that I came across is that there are no finite-dimensional unitary representations of the Poincaré group (Wigners theorem).
But I would like to now some other reasons why fields are necessary in relativistic quantumn mechanics. So could you please write me some arguments that you know?
 
Physics news on Phys.org
  • #2
There are also no finite-dimensional unitary representations of the Galilei group.

The reason is that in relativity you have a more subtle "causality structure", which is most easily fulfilled by descriptions of the dynamics of physical entities in terms of local field theories. There's no way to fulfill locality and causality in the first-quantization formalism, while it's easy to establish using the microcausality constraint on local operators that represent local observables.

From an empirical point of view it's, because when particles collide at relativistic energies (i.e., when the energy exchange between the interacting particles gets in the order of magnitude of the masses of particles that are interacting with the colliding particles) there can always particles be destroyed and new ones created, and this is most naturally described with a quantum-field theoretical description.
 
  • Like
Likes simonjech
  • #3
Thank you for your respond. Can you also please explain why it is impossible to fulfill causality without using fields?
 
Last edited:
  • #4
You can try the first-quantization formalism for, e.g., the Klein-Gordon field. Then you'll see that the time-evolution operator must be
$$\hat{U}(t)=\exp(-\mathrm{i} \sqrt{m^2 + \hat{\vec{p}}^2} t),$$
because energy should be positive definite, i.e., the negative-energy solutions must be abandoned, and the corresponding time evolution of the wave function with this ##\hat{U}(t)## does not fulfill the causality constraint, i.e., if you solve the KG equation with this time-evolution operator for the initial condition ##\Phi(t=0,\vec{x})=\delta^{(3)}(\vec{x})## you get for any ##t>0## a wave function ##\Phi(t,\vec{x})## which is non-zero at any ##\vec{x}##, i.e., you have faster-than-light signal-propagation through ##\Phi##, and this clearly violates relativistic causality.

The solution through QFT is that here you can write the free-field operator with both positive and negative frequency-modes without making the Hamiltonian unbound from below. That's achieved by using the Feynman-Stückelberg trick, i.e., writing an creation instead of an annihilation operator in front of the negative-frequency modes. For the Klein-Gordon field you must quantize everything as bosons to achieve all the good properties of the QFT, i.e., microcausality, ##[\hat{\Phi}(x),\hat{\Phi}(y)]=0## for ##(x-y)## spacelike and positive definiteness of the Hamiltonian:
$$\Phi(x)=\int_{\mathbb{R}^3} \frac{\mathrm{d}^3 p}{(2 \pi)^3 \sqrt{2 E_p}} [\hat{a}(\vec{p}) \exp(-\mathrm{i} x \cdot p) + \hat{b}^{\dagger}(\vec{p}) \exp(+\mathrm{i} x \cdot p]_{p^0=E_p}$$
with ##E_p=\sqrt{m^2+\vec{p}^2}##. The creation and annihilation operators have to fulfill the commutator relations
$$[hat{a}(\vec{p}),\hat{a}^{\dagger}(\vec{q})]=[\hat{b}(\vec{p}),\hat{b}^{\dagger}(\vec{q})]=(2 \pi)^3 \delta^{(3)}(\vec{p}-\vec{q})$$
with all other combinations of operator pairs in the commutator giving 0.

This construction of the microcausal field operators shows that there are necessarily anti particles (annihilated by the ##\hat{b}## operators) with the same mass as the particles (annihilated by the ##\hat{a}## operators). At the same time, thanks to the use of bosonic commutation relations for the field and thsu the annihilation-creation operators, you find a positive semidefinite Hamiltonian,
$$\hat{H}=\int_{\mathbb{R}^3} \frac{\mathrm{d}^3 p}{(2 \pi)^3} E_p [\hat{a}^{\dagger}(\vec{p}) \hat{a}(\vec{p}) +\hat{b}^{\dagger}(\vec{p}) \hat{b}(\vec{p})].$$
For a very clear discussion on an introductory level, see

https://arxiv.org/abs/1110.5013
 
  • Love
Likes simonjech
  • #5
What is tangentially related and really impressed me when I realized it is that QM IS often a QFT, except in 0 spatial and 1 temporal dimensions, except the fields are, for example, the position and momentum operators.
 
  • Like
Likes simonjech
  • #6
vanhees71 said:
You can try the first-quantization formalism for, e.g., the Klein-Gordon field. Then you'll see that the time-evolution operator must be
$$\hat{U}(t)=\exp(-\mathrm{i} \sqrt{m^2 + \hat{\vec{p}}^2} t),$$
because energy should be positive definite, i.e., the negative-energy solutions must be abandoned, and the corresponding time evolution of the wave function with this ##\hat{U}(t)## does not fulfill the causality constraint, i.e., if you solve the KG equation with this time-evolution operator for the initial condition ##\Phi(t=0,\vec{x})=\delta^{(3)}(\vec{x})## you get for any ##t>0## a wave function ##\Phi(t,\vec{x})## which is non-zero at any ##\vec{x}##, i.e., you have faster-than-light signal-propagation through ##\Phi##, and this clearly violates relativistic causality.

The solution through QFT is that here you can write the free-field operator with both positive and negative frequency-modes without making the Hamiltonian unbound from below. That's achieved by using the Feynman-Stückelberg trick, i.e., writing an creation instead of an annihilation operator in front of the negative-frequency modes. For the Klein-Gordon field you must quantize everything as bosons to achieve all the good properties of the QFT, i.e., microcausality, ##[\hat{\Phi}(x),\hat{\Phi}(y)]=0## for ##(x-y)## spacelike and positive definiteness of the Hamiltonian:
$$\Phi(x)=\int_{\mathbb{R}^3} \frac{\mathrm{d}^3 p}{(2 \pi)^3 \sqrt{2 E_p}} [\hat{a}(\vec{p}) \exp(-\mathrm{i} x \cdot p) + \hat{b}^{\dagger}(\vec{p}) \exp(+\mathrm{i} x \cdot p]_{p^0=E_p}$$
with ##E_p=\sqrt{m^2+\vec{p}^2}##. The creation and annihilation operators have to fulfill the commutator relations
$$[hat{a}(\vec{p}),\hat{a}^{\dagger}(\vec{q})]=[\hat{b}(\vec{p}),\hat{b}^{\dagger}(\vec{q})]=(2 \pi)^3 \delta^{(3)}(\vec{p}-\vec{q})$$
with all other combinations of operator pairs in the commutator giving 0.

This construction of the microcausal field operators shows that there are necessarily anti particles (annihilated by the ##\hat{b}## operators) with the same mass as the particles (annihilated by the ##\hat{a}## operators). At the same time, thanks to the use of bosonic commutation relations for the field and thsu the annihilation-creation operators, you find a positive semidefinite Hamiltonian,
$$\hat{H}=\int_{\mathbb{R}^3} \frac{\mathrm{d}^3 p}{(2 \pi)^3} E_p [\hat{a}^{\dagger}(\vec{p}) \hat{a}(\vec{p}) +\hat{b}^{\dagger}(\vec{p}) \hat{b}(\vec{p})].$$
For a very clear discussion on an introductory level, see

https://arxiv.org/abs/1110.5013
Thank you very much for the clarification.
 

FAQ: Necessity of the field viewpoint

What is the field viewpoint in physics?

The field viewpoint in physics is an approach that describes physical phenomena in terms of fields rather than discrete particles. A field is a physical quantity represented by a number or a set of numbers that has a value for each point in space and time. Examples include gravitational fields, electromagnetic fields, and quantum fields.

Why is the field viewpoint considered necessary in modern physics?

The field viewpoint is necessary in modern physics because it provides a more comprehensive and accurate description of the fundamental forces and interactions in nature. For instance, the electromagnetic field theory by James Clerk Maxwell unified electricity and magnetism, and quantum field theory is essential for understanding particle physics and the Standard Model.

How does the field viewpoint differ from the particle viewpoint?

The field viewpoint differs from the particle viewpoint in that it describes interactions as continuous and spread out over space, rather than as occurring at discrete points. While the particle viewpoint focuses on individual particles and their trajectories, the field viewpoint emphasizes the underlying fields that govern the behavior of particles.

What are some practical applications of the field viewpoint?

Practical applications of the field viewpoint include the design and functioning of various technologies such as MRI machines, which rely on electromagnetic fields, and GPS systems, which take into account the gravitational field of the Earth. Additionally, quantum field theory is crucial for the development of particle accelerators and understanding fundamental particles.

Can the field viewpoint explain all physical phenomena?

While the field viewpoint has been extremely successful in explaining a wide range of physical phenomena, it is not without its limitations. For example, integrating gravity into the quantum field framework remains an open challenge, leading to ongoing research in the field of quantum gravity. However, for many areas of physics, the field viewpoint provides a powerful and essential tool for understanding and predicting natural phenomena.

Similar threads

Replies
87
Views
6K
Replies
1
Views
1K
Replies
7
Views
2K
Replies
87
Views
8K
Replies
113
Views
8K
Replies
134
Views
8K
Replies
10
Views
2K
Back
Top