Need a force-like unit for classical particle system simulation

AI Thread Summary
The discussion centers on creating a simulation for capacitance and current flow in capacitors, focusing on the challenge of finding an appropriate unit to replace Newton for motionless, mass-less particles in a classical field simulation. The goal is to simplify the system to resemble a non-compressible fluid, which raises questions about how to establish initial conditions without relying on traditional force concepts. Participants suggest that modeling current flow using fluid mechanics may not be ideal and recommend utilizing solid-state physics equations instead. The original poster has experience with SPICE simulations and is interested in developing their understanding of circuit simulation further. Overall, the conversation emphasizes the importance of using established models and equations for accurate simulation results.
iteratee
Messages
6
Reaction score
3
TL;DR Summary
How to deal with "non-compressible" fluids?
I am doing a learning project by writing a simulation that includes capacitance and current flow amongst capacitors that may potentially be in parallel. I don't care about certain details yet - dissipation factor, frequency dependent effects, temperature. Tiny capacitences within diode junctions and (importantly) FET gates are the relevant charge storage elements.

A pretty fundamental sub-problem eventually arises: what unit would one substitute for the Newton to describe the magnitude of interaction between motionless and effectively mass-less particles in a classical field simulation? I want to "simplify" the system so that my particles are essentially a non-compressible fluid, with the obvious immediate implication being that Newton's first law effectively goes away. Intuitively I need some kind of unit that works independently of acceleration, (and some googleable terms or else I just get pointed to a pile of "what is force?" articles.)

Are there methods for starting from a "fictitious shove magnitude" as a force surrogate for establishing initial conditions that later convert to back into conventional units for currents and voltages etc? I have looked at how spice handles operating point analysis with its initial conditions approximation, but I'm investigating alternatives.

Clues greatly appreciated! :biggrin:
 
Engineering news on Phys.org
iteratee said:
Summary:: How to deal with "non-compressible" fluids?

I am doing a learning project by writing a simulation that includes capacitance and current flow amongst capacitors that may potentially be in parallel. I don't care about certain details yet - dissipation factor, frequency dependent effects, temperature. Tiny capacitences within diode junctions and (importantly) FET gates are the relevant charge storage elements.

A pretty fundamental sub-problem eventually arises: what unit would one substitute for the Newton to describe the magnitude of interaction between motionless and effectively mass-less particles in a classical field simulation? I want to "simplify" the system so that my particles are essentially a non-compressible fluid, with the obvious immediate implication being that Newton's first law effectively goes away. Intuitively I need some kind of unit that works independently of acceleration, (and some googleable terms or else I just get pointed to a pile of "what is force?" articles.)

Are there methods for starting from a "fictitious shove magnitude" as a force surrogate for establishing initial conditions that later convert to back into conventional units for currents and voltages etc? I have looked at how spice handles operating point analysis with its initial conditions approximation, but I'm investigating alternatives.

Clues greatly appreciated! :biggrin:
What is your math background so far? Does it include Calculus, Differential Equations and Linear Algebra (matrices)?

Do you have experience with SPICE already? That is the gold standard for circuit simulations. If you do, have you done these simulations in SPICE and are now wanting to get into more of a FEA-type of analysis? If so, trying to model current flow with fluid mechanics is probably the wrong way to go. You should be using Fermi surfaces and solid state Physics equations to try to model current flow at an atomic level, IMO.
 
berkeman said:
What is your math background so far? Does it include Calculus, Differential Equations and Linear Algebra (matrices)?

Ha well I'm a self-taught computer science guy with my day-to-day being predictably irrelevant discrete math, logic, type-theory sorts of things. Learning the linear algebra necessary for solving matrices for circuit simulation looks pretty "within reach". I should do that. I have no formal math education.

Do you have experience with SPICE already? That is the gold standard for circuit simulations. If you do, have you done these simulations in SPICE and are now wanting to get into more of a FEA-type of analysis?

I've had a couple years playing around with ngspice, ltspice, and have done some reverse-engineering / modifying of old opamp macromodels to understand their workings. I'm kind of curious about trying my hand at writing xspice libraries and also in the methods underlying tools like fastcap that sort of compile a field simulation down into an equivalent netlist (kind of a hack but interesting nonetheless).

If so, trying to model current flow with fluid mechanics is probably the wrong way to go. You should be using Fermi surfaces and solid state Physics equations to try to model current flow at an atomic level, IMO.

Drats, OK somewhat expected answer. Modeling fermi-dirac distribution is a little "lower level" than I was thinking. I'll have to learn some prerequisites clearly, but I knew that. If I were really hardcore about proper semiconductor simulation I'd use the existing models for starters.

Thanks for the reply!
 
iteratee said:
I've had a couple years playing around with ngspice, ltspice, and have done some reverse-engineering / modifying of old opamp macromodels to understand their workings. I'm kind of curious about trying my hand at writing xspice libraries and also in the methods underlying tools like fastcap that sort of compile a field simulation down into an equivalent netlist
I think that's a great next step for you. Learn to write code that simulates circuits using the same equations that SPICE simulators use. There are lots of examples out there, and it's pretty easy to see if your simulation is correct for simpler circuits. Post some of your time domain transient results for us to check! :smile:
 
  • Like
Likes sophiecentaur and iteratee
berkeman said:
I think that's a great next step for you. Learn to write code that simulates circuits using the same equations that SPICE simulators use.
I couldn't agree more. Simulations are only as good as the rules they operate with. Quasi mechanical models for EM really don't work well at all and you could never be sure of an answer that such a simulation delivers. Spice is well founded so the OP could rely on how it works.
 
  • Like
Likes DaveE, iteratee and berkeman
Hey guys. I have a question related to electricity and alternating current. Say an alien fictional society developed electricity, and settled on a standard like 73V AC current at 46 Hz. How would appliances be designed, and what impact would the lower frequency and voltage have on transformers, wiring, TVs, computers, LEDs, motors, and heating, assuming the laws of physics and technology are the same as on Earth?
While I was rolling out a shielded cable, a though came to my mind - what happens to the current flow in the cable if there came a short between the wire and the shield in both ends of the cable? For simplicity, lets assume a 1-wire copper wire wrapped in an aluminum shield. The wire and the shield has the same cross section area. There are insulating material between them, and in both ends there is a short between them. My first thought, the total resistance of the cable would be reduced...
I used to be an HVAC technician. One time I had a service call in which there was no power to the thermostat. The thermostat did not have power because the fuse in the air handler was blown. The fuse in the air handler was blown because there was a low voltage short. The rubber coating on one of the thermostat wires was chewed off by a rodent. The exposed metal in the thermostat wire was touching the metal cabinet of the air handler. This was a low voltage short. This low voltage...
Back
Top