- #1
angela123
- 3
- 0
Question: Let T:V-->W and S:W-->U be linear transformation.Show that
1) If T and S are one-to-one,then ST is one-to one
2) If ST is one-to-one,then T is one-to-one
3)Give example of two linear transformations T and S, such
that ST is one-to-one ,but S is not.
For 1),Since T is one-to-one,there is some vector in V,such that T(v)=O
Since S is one-to-one,there is some vector in W,such that S(w)=O
If ST is one-to-one,then there is some vector t in T,such that
ST(t)=S(T(t))=O,so how could I proof T(t)=w?
How about question 2) &3)
1) If T and S are one-to-one,then ST is one-to one
2) If ST is one-to-one,then T is one-to-one
3)Give example of two linear transformations T and S, such
that ST is one-to-one ,but S is not.
For 1),Since T is one-to-one,there is some vector in V,such that T(v)=O
Since S is one-to-one,there is some vector in W,such that S(w)=O
If ST is one-to-one,then there is some vector t in T,such that
ST(t)=S(T(t))=O,so how could I proof T(t)=w?
How about question 2) &3)