- #1
Rib5
- 59
- 0
Hi guys,
I'm having some issues understanding something about the Fourier transform. In my first signals and systems class we used the angular frequency omega. Doing it like that you end up with a weighing factor or 1/(2pi) when you take the transform. Now in the dsp class I am taking now we are using the frequency in Hz.
The thing I don't get is how can the amplitude in one frequency be different than in another for the same signal. I also read about another way of doing it where in both directions you multiply it by 1/sqrt(2pi), helping to preserve duality.
Is the frequency transform basically different based on how it is interpreted? Can someone help me out here, I don't know exactly what I am confused about but I don't see how it can just be arbitrarily defined and have different amplitudes for what is apparently the same thing just in a different frequency?
For example a sine wave has an amplitude of 1. So it would seem reasonable that in the Fourier transform it would have an impulse of 1 at the correct frequency. But if you use radians for the Fourier transform, it has a different amplitude!
I'm having some issues understanding something about the Fourier transform. In my first signals and systems class we used the angular frequency omega. Doing it like that you end up with a weighing factor or 1/(2pi) when you take the transform. Now in the dsp class I am taking now we are using the frequency in Hz.
The thing I don't get is how can the amplitude in one frequency be different than in another for the same signal. I also read about another way of doing it where in both directions you multiply it by 1/sqrt(2pi), helping to preserve duality.
Is the frequency transform basically different based on how it is interpreted? Can someone help me out here, I don't know exactly what I am confused about but I don't see how it can just be arbitrarily defined and have different amplitudes for what is apparently the same thing just in a different frequency?
For example a sine wave has an amplitude of 1. So it would seem reasonable that in the Fourier transform it would have an impulse of 1 at the correct frequency. But if you use radians for the Fourier transform, it has a different amplitude!
Last edited: