- #1
twoflower
- 368
- 0
Hi,
could you help me a bit with this limit?
[tex]
\lim_{n \rightarrow \infty} \sqrt[n]{n!}
[/tex]
Sure it should be more than
[tex]
\lim_{n \rightarrow \infty} \sqrt[n]{n}
[/tex]
But, when I write it as
[tex]
\lim_{n \rightarrow \infty} \sqrt[n]{n!} = \lim_{n \rightarrow \infty} \sqrt[n]{n} . \lim_{n \rightarrow \infty} \sqrt[n]{n-1} . \lim_{n \rightarrow \infty} \sqrt[n]{n-2} ... \lim_{n \rightarrow \infty} \sqrt[n]{1}
[/tex]
each term goes to 1, so I thought the limit could be 1, but that would be strange...
Thank you.
could you help me a bit with this limit?
[tex]
\lim_{n \rightarrow \infty} \sqrt[n]{n!}
[/tex]
Sure it should be more than
[tex]
\lim_{n \rightarrow \infty} \sqrt[n]{n}
[/tex]
But, when I write it as
[tex]
\lim_{n \rightarrow \infty} \sqrt[n]{n!} = \lim_{n \rightarrow \infty} \sqrt[n]{n} . \lim_{n \rightarrow \infty} \sqrt[n]{n-1} . \lim_{n \rightarrow \infty} \sqrt[n]{n-2} ... \lim_{n \rightarrow \infty} \sqrt[n]{1}
[/tex]
each term goes to 1, so I thought the limit could be 1, but that would be strange...
Thank you.