MHB Need help with parallelogram proof

AI Thread Summary
The discussion centers on proving a relationship involving the sides of a parallelogram using similar triangles. The user identifies that opposite sides and angles of a parallelogram are congruent, establishing similarity between triangles WYS and STW. However, confusion arises regarding the proportional relationships SX x YW = SV x WT, as the user struggles to match corresponding parts of the triangles. A suggestion is made to focus on the triangles SXY and SVT instead, emphasizing the importance of using the properties of the parallelogram. Clarification on these relationships is sought to solidify the proof.
sc00t34
Messages
1
Reaction score
0
Hello, we are learning about similar triangles and this was a problem. So I know that opposite sides of a parallelogram are congruent as are opposite angles, so I can establish similarity with triangles WYS and STW, but I don't understand how that proves SX x YW = SV x WT because the proportions don't match up when I compare similar triangles for their corresponding parts.

Any help is greatly appreciated... am I on the right track?

This is what I have so far. See attached image.

Statement Reason

1. WYST is Parallelogram. 1. Given
2. angle Y and angle T are congruent. 2. Def of parallelogram, opposite angles congruent.
3. WT and YS congruent, WY and TS congruent. 3. Def of parallelogram, opposite sides congruent.
4. WYS and STW are similar. 4. SAS
?
 

Attachments

  • IMG_0700 copy.jpg
    IMG_0700 copy.jpg
    12.7 KB · Views: 141
Mathematics news on Phys.org
The similar triangles that you need to look at are $SXY$ and $SVT$. Then use the fact that opposite sides of the parallelogram are equal.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top