- #1
Kuma
- 134
- 0
Need some urgent help with Riemann Sums.
PART A:
In all of this question, let I = [tex]\int ^{2}_{-2} f(x)dx [/tex] [tex]where f(x) = -2x + 1 [/tex]
Evaluate I.
PART B:
Use the defintion of the definite integral to evaluate I.
i.e Riemann Sum.
PART A:
I = [-(2)^2 + (2)] - [-(-2)^2 + (-2)]
I = -2 + 6 = 4
Part B is what i am having trouble with.
Xk = a + k([tex]\Delta x[/tex])
a = -2
and
[tex]\Delta x[/tex] = b-a/n = 2- (-2)/n = 4/n
so then
Xk = -2 + 4k/n
Now the Reimann sum is:
[tex]\sum f(Xk)(\Delta x)[/tex] = [tex]\sum [-2(-2 + 4k/n) + 1](4/n)[/tex]
= 4/n [tex]\sum 4 - 8k/n + 1 [/tex]
= 4/n [tex]\sum -8k/n + 5[/tex]
= 4/n x -8/n [tex]\sum k[/tex] + [tex]\sum 5[/tex]
= -32/n2 x [(n)(n+1)/2] + 5n
Now when i take the limit approaching infinity for that, it doesn't give me 4 as an answer unless I am doing something wrong.
This is where i am stuck at.
Homework Statement
PART A:
In all of this question, let I = [tex]\int ^{2}_{-2} f(x)dx [/tex] [tex]where f(x) = -2x + 1 [/tex]
Evaluate I.
PART B:
Use the defintion of the definite integral to evaluate I.
i.e Riemann Sum.
Homework Equations
The Attempt at a Solution
PART A:
I = [-(2)^2 + (2)] - [-(-2)^2 + (-2)]
I = -2 + 6 = 4
Part B is what i am having trouble with.
Xk = a + k([tex]\Delta x[/tex])
a = -2
and
[tex]\Delta x[/tex] = b-a/n = 2- (-2)/n = 4/n
so then
Xk = -2 + 4k/n
Now the Reimann sum is:
[tex]\sum f(Xk)(\Delta x)[/tex] = [tex]\sum [-2(-2 + 4k/n) + 1](4/n)[/tex]
= 4/n [tex]\sum 4 - 8k/n + 1 [/tex]
= 4/n [tex]\sum -8k/n + 5[/tex]
= 4/n x -8/n [tex]\sum k[/tex] + [tex]\sum 5[/tex]
= -32/n2 x [(n)(n+1)/2] + 5n
Now when i take the limit approaching infinity for that, it doesn't give me 4 as an answer unless I am doing something wrong.
This is where i am stuck at.