MHB Need Sum of Formula [shortcut]

  • Thread starter Thread starter susanto3311
  • Start date Start date
  • Tags Tags
    Formula Sum
AI Thread Summary
The discussion focuses on solving a problem involving the sum of a geometric series. The formula for the sum of the first n terms of a geometric series is provided, which is S_n = a(r^n - 1) / (r - 1). Two specific examples of geometric series are presented: 1 + 7^1 + 7^2 + 7^3 + 7^4 + 7^5 and 3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 3^7. Participants are encouraged to apply the formula to these examples to find the respective sums. The conversation emphasizes the importance of understanding geometric series for solving related problems.
susanto3311
Messages
73
Reaction score
0
hi guys.

i have 2 questions, how do solve this problem with formula [shortcut] :

please, see attachment file..

thanks for your helping..

susanto3311
 

Attachments

  • sum problem 2.png
    sum problem 2.png
    1.7 KB · Views: 93
Mathematics news on Phys.org
Consider the following sum:

$$S_n=a^0+a^1+a^2+\cdots+a^n\tag{1}$$

Now multiply through by $a$:

$$aS_n=a^1+a^2+a^3+\cdots+a^{n+1}\tag{2}$$

What do you get if you subtract (1) from (2)?
 
Hello, susanto3311!

$1 + 7^1 + 7^2 + 7^3 + 7^4 + 7^5 \:=\:? $

$3^1 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 3^7 \:=\:?$
These are Geometric Series.
MarkFL indicated how we find the formulas for these series.

The sum of the first $n$ terms of Geometric Series

$\;\;\;$is given by: $\:S_n \;=\;a\,\dfrac{r^n\,-\,1}{r\,-\,1}$

where: $\:\begin{Bmatrix}a &=& \text{first term} \\ r &=& \text{common ratio} \\ n &=& \text{no. of terms}\end{Bmatrix}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
5
Views
2K
Replies
2
Views
1K
Replies
1
Views
1K
Replies
11
Views
3K
Replies
4
Views
2K
Replies
41
Views
5K
Replies
5
Views
2K
Replies
3
Views
1K
Replies
2
Views
2K
Back
Top