- #1
solakis1
- 422
- 0
Prove the following:
\(\displaystyle \neg\forall\epsilon[\epsilon>0\Longrightarrow\exists\delta(\delta>0\wedge\forall x(x\in Df\wedge 0<|x-a|<\delta\Longrightarrow |f(x)-l|<\epsilon))]\)\(\displaystyle \Longleftrightarrow\exists\epsilon[\epsilon>0\wedge\forall\delta(\delta>0\Longrightarrow\exists x(x\in Df\wedge 0<|x-a|<\delta\wedge |f(x)-l|\geq\epsilon))]\)
By using the 4 basic rules of predicate calculus plus the rules of propositional calculus
\(\displaystyle \neg\forall\epsilon[\epsilon>0\Longrightarrow\exists\delta(\delta>0\wedge\forall x(x\in Df\wedge 0<|x-a|<\delta\Longrightarrow |f(x)-l|<\epsilon))]\)\(\displaystyle \Longleftrightarrow\exists\epsilon[\epsilon>0\wedge\forall\delta(\delta>0\Longrightarrow\exists x(x\in Df\wedge 0<|x-a|<\delta\wedge |f(x)-l|\geq\epsilon))]\)
By using the 4 basic rules of predicate calculus plus the rules of propositional calculus