MHB Neonblast342's question at Yahoo Answers regarding finding a rate of change

AI Thread Summary
The discussion focuses on finding the rate of change of the central angle θ with respect to the radius r in a circular sector while keeping the area A constant. The area is given by the formula A = (1/2)r²θ. By differentiating this equation and applying the product rule, it is established that dθ/dr = -2θ/r, indicating that as r increases, θ must decrease to maintain a constant area. Further simplification leads to the expression dθ/dr = -4A/r³. Specifically, when r equals 6, the rate of change is calculated as dθ/dr = -A/54.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus problem! Please help!?

The area of a sector in a circle is given by the formulawhere r is the radius andis the central angle measured in radians. Find the rate of change ofwith respect to r if A remains constant. What is the rate when r = 6?

Here is a link to the question:

Calculus problem! Please help!? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello neonblast342,

The formula for the area of the described circular sector is:

$\displaystyle A=\frac{1}{2}r^2\theta$

where $r,\theta>0$

We need to compute $\displaystyle \frac{d\theta}{dr}$.

I would first multiply through by 2:

$\displaystyle 2A=r^2\theta$

Now, differentiate with respect to $r$, and since $\theta$ is a function of $r$, we must use the product rule on the right side. We should recall that $A$ is a constant:

$\displaystyle 0=r^2\frac{d\theta}{dr}+2r\theta$

If we observe that $0<r$, otherwise we have a degenerate sector where $\theta$ has no meaning, then we may divide through by $r$ to obtain:

$\displaystyle 0=r\frac{d\theta}{dr}+2\theta$

Solve for $\displaystyle \frac{d\theta}{dr}$:

$\displaystyle \frac{d\theta}{dr}=-\frac{2\theta}{r}$

The negative sign indicates that $r$ and $\theta$ must move in opposite directions in order for $A$ to remain constant. IN other words, if $r$ increases, the $\theta$ must decrease and vice versa.

We want to have our derivative in terms of $r$ alone, so using the formula for the area $A$ of the sector, we find:

$\displaystyle \theta=\frac{2A}{r^2}$

and so we have:

$\displaystyle \frac{d\theta}{dr}=-\frac{2\frac{2A}{r^2}}{r}=-\frac{4A}{r^3}$

When $r=6$ we find:

$\displaystyle \frac{d\theta}{dr}|_{r=6}=-\frac{4A}{6^3}=-\frac{A}{54}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top