- #1
kquantum
- 1
- 1
I found this a very interesting article:
Retrocausality may sound like science fiction, but it might be the best way to explain certain features of the quantum world, as detailed in a major new paper by physicists Ken Wharton and Nathan Argaman. Published in Reviews of Modern Physics, Wharton and Argaman's paper analyses possible ways to model measurements of "entangled" particles. One reasonable option, they conclude, is to treat the future choices of experimentalists as inputs, using them to explain past events. This isn't quite time-travel, since those past events remain hidden in quantum uncertainty, but it would be a reversal of the usual direction of causation. The authors conclude that such future-input dependent models warrant further study and development, given that they are more compatible with the theory of relativity than are traditional non-local approaches.
K. B. Wharton and N. Argaman (2020) Bell’s theorem and locally mediated reformulations of quantum mechanics. Rev. Mod. Phys. 92, 021002.
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.92.021002
Retrocausality may sound like science fiction, but it might be the best way to explain certain features of the quantum world, as detailed in a major new paper by physicists Ken Wharton and Nathan Argaman. Published in Reviews of Modern Physics, Wharton and Argaman's paper analyses possible ways to model measurements of "entangled" particles. One reasonable option, they conclude, is to treat the future choices of experimentalists as inputs, using them to explain past events. This isn't quite time-travel, since those past events remain hidden in quantum uncertainty, but it would be a reversal of the usual direction of causation. The authors conclude that such future-input dependent models warrant further study and development, given that they are more compatible with the theory of relativity than are traditional non-local approaches.
K. B. Wharton and N. Argaman (2020) Bell’s theorem and locally mediated reformulations of quantum mechanics. Rev. Mod. Phys. 92, 021002.
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.92.021002