- #1
quazar540
- 3
- 0
Hi all,
I've developed a new sieving method that I believe provides a tight lower bound for the counting of certain kinds of primes. I'm 99% sure my solution works, and if so, it would allow the solution of many kinds of problems in additive number theory. The sieving method came out of many months of research on Goldbach's Conjecture, of which I believe I also have a proof. Basically I'm looking for some peer review, preferably by an individual(s) with an advanced degree in mathematics and a personal interest in number theory. I won't submit my solution to anyone who doesn't provide a form of proof of their credentials (emails received from a ****@****.edu address will usually suffice) as I'm wary of academic theft. If you're interested in taking a look at my work, please send me a message including your email address and I will contact you.
Thanks.
P.S. I realize some of you online are going to think that it's very unlikely I have something worth looking at (given the age and difficulty of the problems I'm referencing). While you may be right, I'd appreciate it if only those that are genuinely interested in providing feedback contact me, as I have no time for flame wars or haters. If you think I'm full of ****, fine, but don't waste my time or yours trying to tell me so.
I've developed a new sieving method that I believe provides a tight lower bound for the counting of certain kinds of primes. I'm 99% sure my solution works, and if so, it would allow the solution of many kinds of problems in additive number theory. The sieving method came out of many months of research on Goldbach's Conjecture, of which I believe I also have a proof. Basically I'm looking for some peer review, preferably by an individual(s) with an advanced degree in mathematics and a personal interest in number theory. I won't submit my solution to anyone who doesn't provide a form of proof of their credentials (emails received from a ****@****.edu address will usually suffice) as I'm wary of academic theft. If you're interested in taking a look at my work, please send me a message including your email address and I will contact you.
Thanks.
P.S. I realize some of you online are going to think that it's very unlikely I have something worth looking at (given the age and difficulty of the problems I'm referencing). While you may be right, I'd appreciate it if only those that are genuinely interested in providing feedback contact me, as I have no time for flame wars or haters. If you think I'm full of ****, fine, but don't waste my time or yours trying to tell me so.