Newton's Third Law: Action and Reaction Explained

In summary: I avoid the use of reaction because in Newtonian physics where action and reaction occur simultaneously, there is no justification of calling one force action and the other reaction. I call the forces drawn in FBDs as action forces because they are external to the system and "act" on it. More generally, I give a name to the whatever force, e.g. "Fred", and then talk about the Third Law counterpart of "Fred".In summary, the force on the system is non zero and depends on how inclusive your system is.
  • #1
thomas_shvekher
10
6
Homework Statement
I understand that every action force has a reaction force of equal magnitude and opposite direction. In the drawing below, I undertsand that box 1 exerts a force on box 2, and box 2 exerts a force of the same magnitude but opposite direction on box 1 (it is an internal force). That being said, let's say that the person pushing on the two boxes pushes with a force of 25N, and the boxes expericne 10N of friction - what are the opposite and equal reaction forces to the forces listed above (what force is opposite and equal to the 25N of the applied force, and what force is opposite and equal to the 10N of friction force?).
Relevant Equations
Newton's Third Law.
1680822402331.png
 
Physics news on Phys.org
  • #2
The net force is non zero on the system I.e. the boxes are accelerating. I don’t think you can tell without the masses of the boxes, and friction force acting in each.
 
  • Like
Likes MatinSAR, topsquark and thomas_shvekher
  • #3
erobz said:
The net force is non zero on the system
Depends on how inclusive your system is.
 
  • Like
Likes topsquark
  • #4
hmmm27 said:
Depends on how inclusive your system is.
Can you explain.
 
  • #5
hmmm27 said:
Depends on how inclusive your system is.
Am I misunderstanding the problem?
 
  • Like
Likes topsquark
  • #6
The problem looks pretty straightforwards (except maybe if you wanted numerical values for the BoxA<>BoxB force interaction, the value for friction [and mass] needs be specified for each box).

But, regardless of acceleration, the forces are still balanced when all the players are accounted for ; not just the person and the boxes.
 
Last edited:
  • Like
Likes topsquark and erobz
  • #7
hmmm27 said:
The problem looks pretty straightforwards (except maybe if you wanted numerical values for the BoxA<>BoxB interaction, more detail needs be shown regarding friction).
This is what I was thinking, I guess that's not actually what is being asked.
 
  • Like
Likes topsquark
  • #8
Regradless of whether the person and the boxes are accelerating or not, if the person exerts 25 N on box 1 to the right, Box 1 exerts on the person 25 N to the left. If the ground exerts 10 N to the left on the boxes, the boxes exert 10 N on the ground to the right.

If the system starts moving from rest, how does it accelerate? Note that friction between the feet of the person and the ground provides the accelerating force to the right and must be greater than 10 N. If it's equal to 10 N, the system will be moving at constant velocity.
 
  • Like
Likes PeroK, MatinSAR, topsquark and 2 others
  • #9
I think I skim read a bit too much (and I was secretly hoping they were going to solve for the Newtons Third Law pair between the boxes - it feels a tad slow recently?)!

Unfortunately, the problem is basically reduces to figuring out what to call the reaction force that acts opposite to the whatever the force in question is?
 
  • Like
Likes hmmm27 and topsquark
  • #10
erobz said:
I think I skim read a bit too much (and I was secretly hoping they were going to solve for the Newtons Third Law pair between the boxes - it feels a tad slow recently?)!
That can be done. If the coefficient of kinetic friction between ground and boxes is ##\mu_k##, and the force exerted by the person is ##F_0##, we can write the Second Law fro the two-block system and find the common acceleration first. $$F_{net}=F_0-\mu_k(m_1+m_2)g=(m_1+m_2)a\implies a=\frac{F_0}{m_1+m_2}-\mu_k g.$$The net force on leading block 1 is $$F_{net}=m_1a=m_1\left(\frac{F_0}{m_1+m_2}-\mu_k g\right)=F_{21}-\mu_k m_1g \implies F_{21}=\frac{m_1}{m_1+m_2}F_0.$$The net force on trailing block 2 is $$F_{net}=m_2a=m_2\left(\frac{F_0}{m_1+m_2}-\mu_k g\right)=F_0-F_{12}-\mu_k m_2g \implies F_{12}=\frac{m_1}{m_1+m_2}F_0.$$ Note that the forces between the boxes are independent of the coefficient of kinetic friction. They have the same value even when the boxes slide on a frictionless surface.
erobz said:
Unfortunately, the problem is basically reduces to figuring out what to call the reaction force that acts opposite to the whatever the force in question is?
I avoid the use of reaction because in Newtonian physics where action and reaction occur simultaneously, there is no justification of calling one force action and the other reaction. I call the forces drawn in FBDs as action forces because they are external to the system and "act" on it. More generally, I give a name to the whatever force, e.g. "Fred", and then talk about the Third Law counterpart of "Fred".
 
  • Like
Likes jbriggs444, topsquark and erobz
  • #11
kuruman said:
Note that the forces between the boxes are independent of the coefficient of kinetic friction. They have the same value even when the boxes slide on a frictionless surface.
. . . by which you mean "are still equal to each other" not "same for each CoF".
kuruman said:
More generally, I give a name to the whatever force, e.g. "Fred", and then talk about the Third Law counterpart of "Fred".
Derf.
 
  • Like
Likes topsquark
  • #12
hmmm27 said:
. . . by which you mean "are still equal to each other" not "same for each CoF".
I mean the same for any CoF. As you see from the derivation in post #10, $$F_{21}=F_{12}=\frac{m_1}{m_1+m_2}F_0.$$ The CoF, whatever its value, affects only the acceleration not the Third Law pairs.
 
  • Like
Likes topsquark
  • #13
kuruman said:
That can be done. If the coefficient of kinetic friction between ground and boxes is ##\mu_k##, and the force exerted by the person is ##F_0##, we can write the Second Law fro the two-block system and find the common acceleration first. $$F_{net}=F_0-\mu_k(m_1+m_2)g=(m_1+m_2)a\implies a=\frac{F_0}{m_1+m_2}-\mu_k g.$$The net force on leading block 1 is $$F_{net}=m_1a=m_1\left(\frac{F_0}{m_1+m_2}-\mu_k g\right)=F_{21}-\mu_k m_1g \implies F_{21}=\frac{m_1}{m_1+m_2}F_0.$$The net force on trailing block 2 is $$F_{net}=m_2a=m_2\left(\frac{F_0}{m_1+m_2}-\mu_k g\right)=F_0-F_{12}-\mu_k m_2g \implies F_{12}=\frac{m_1}{m_1+m_2}F_0.$$ Note that the forces between the boxes are independent of the coefficient of kinetic friction. They have the same value even when the boxes slide on a frictionless surface.

I avoid the use of reaction because in Newtonian physics where action and reaction occur simultaneously, there is no justification of calling one force action and the other reaction. I call the forces drawn in FBDs as action forces because they are external to the system and "act" on it. More generally, I give a name to the whatever force, e.g. "Fred", and then talk about the Third Law counterpart of "Fred".
Seems like you might have labled your blocks opposite of the diagram in the OP?

Interesting though, I didn’t see that they would only depend on mass and pushing force, not friction (I didn’t solve it).

Thanks!
 
  • Like
Likes topsquark and kuruman
  • #14
erobz said:
Seems like you might have labled your blocks opposite of the diagram in the OP?
Good catch. Thanks.
 
  • Like
Likes topsquark and erobz
  • #15
kuruman said:
That can be done. If the coefficient of kinetic friction between ground and boxes is ##\mu_k##, and the force exerted by the person is ##F_0##, we can write the Second Law fro the two-block system and find the common acceleration first. $$F_{net}=F_0-\mu_k(m_1+m_2)g=(m_1+m_2)a $$ $$ \implies a=\frac{F_0}{m_1+m_2}-\mu_k g$$
Awesome !

The next two formulae are giving me problems...more cogitation required.

(Note that - on my screen, at least - all of them are cut off somewhere around the \implies's, which I didn't realize for awhile : tossed a couple extra $'s into the Quote to make it legible for myself.)
 
  • #16
thomas_shvekher said:
Homework Statement: I understand that every action force has a reaction force of equal magnitude and opposite direction. In the drawing below, I undertsand that box 1 exerts a force on box 2, and box 2 exerts a force of the same magnitude but opposite direction on box 1 (it is an internal force). That being said, let's say that the person pushing on the two boxes pushes with a force of 25N, and the boxes expericne 10N of friction - what are the opposite and equal reaction forces to the forces listed above (what force is opposite and equal to the 25N of the applied force, and what force is opposite and equal to the 10N of friction force?).
Relevant Equations: Newton's Third Law.

View attachment 324585
By my reckoning there are five pairs of third law forces in that scenario. Can you label them?
 
  • Like
Likes topsquark

FAQ: Newton's Third Law: Action and Reaction Explained

```html

What is Newton's Third Law of Motion?

Newton's Third Law of Motion states that for every action, there is an equal and opposite reaction. This means that forces always come in pairs; when one object exerts a force on another, the second object exerts a force of equal magnitude but in the opposite direction on the first object.

Can you provide a simple example of Newton's Third Law?

A common example is the interaction between a swimmer and the water. When the swimmer pushes against the water with their hands, the water pushes back with an equal and opposite force, propelling the swimmer forward.

How does Newton's Third Law apply to everyday life?

Newton's Third Law is evident in many everyday activities. For instance, when you walk, your foot pushes backward against the ground, and the ground pushes forward against your foot with an equal force, allowing you to move forward.

Does Newton's Third Law apply in space?

Yes, Newton's Third Law applies universally, including in the vacuum of space. For example, when a spacecraft fires its thrusters, the expelled gas exerts a force on the spacecraft, and the spacecraft exerts an equal and opposite force on the gas, causing the spacecraft to move.

Why don't action and reaction forces cancel each other out?

Action and reaction forces do not cancel each other out because they act on different objects. For instance, if you push against a wall, the force you exert on the wall and the force the wall exerts on you are equal and opposite, but they act on different bodies, so they do not cancel out.

```

Similar threads

Replies
13
Views
621
Replies
8
Views
2K
Replies
25
Views
813
Replies
9
Views
1K
Replies
2
Views
6K
Back
Top