MHB Nick's question at Yahoo Answers regarding a volume by slicing

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Volume
AI Thread Summary
The discussion addresses calculating the volume of a solid with a circular base defined by x^2 + y^2 = 25, where cross sections perpendicular to the x-axis are triangular with equal height and base. The volume of each triangular slice is derived to be dV = 2y^2 dx, leading to the expression dV = 2(25 - x^2) dx when substituting for y. By integrating from -5 to 5, the total volume is computed as V = 4∫(0 to 5)(25 - x^2) dx. The final result for the volume is V = 1000/3. This method effectively utilizes geometric properties and integration techniques to solve the problem.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Volume of solid (calc 2)?


Find the volume V of the solid whose base is the circle
x^2 + y^2 = 25
and whose cross sections perpendicular to the x-axis are triangles whose height and base are equal.

help appreciated

thanks

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello nick,

For an arbitrary slice of the described solid, the base of this triangular slice will be from the $y$-coordinate of the upper half to the $y$-coordinate of the lower half, or:

$$b=y-(-y)=2y$$

And thus, since the base and height are the same, and using the formula for the area of a triangle, we find the volume of the slice is:

$$dV=\frac{1}{2}(2y)(2y)\,dx=2y^2\,dx$$

Now, using the boundary of the base of the solid, we find:

$$2y^2=2\left(25-x^2 \right)$$

And so we obtain:

$$dV=2\left(25-x^2 \right)\,dx$$

Now, summing up the slices, we get:

$$V=2\int_{-5}^{5}25-x^2\,dx$$

And using the even-function rule, we may write:

$$V=4\int_{0}^{5}25-x^2\,dx$$

Applying the FTOC, there results:

$$V=4\left[25x-\frac{1}{3}x^3 \right]_{0}^{5}=4\cdot5^3\left(1-\frac{1}{3} \right)=\frac{(2\cdot5)^3}{3}=\frac{1000}{3}$$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top