- #1
DreamWeaver
- 303
- 0
In this tutorial we will be exploring the Nielsen Polylogarithm, and it's close relative, the Generalized Logsine Integral. Both of these functions have numerous applications in maths and physics, not least of all in Quantum Theory. The main purpose here, however, will be employing them in the evaluation of certain types of integrals - particularly, but not exclusively, those involving logarithms of trigonometric functions.For non-negative integers \(\displaystyle m\) and \(\displaystyle n\), where \(\displaystyle n-m \ge 1\), the Generalized Logsine Integral is defined by:\(\displaystyle \mathscr{Ls}_n^{(m)} (\theta) = -\int_0^{\theta} x^m \log^{n-m-1} \Bigg| 2 \sin \frac{x}{2} \Bigg| \, dx\)By the First Fundamental Theorem of Calculus, we immediately have\(\displaystyle \frac{d}{d\theta} \mathscr{Ls}_n^{(m)} (\theta)= - \theta^m \log^{n-m-1} \Bigg| 2 \sin \frac{\theta}{2} \Bigg| \)Next, we consider the integrated form of the Generalized Logsine Integral, and perform an integration by parts:\(\displaystyle \int_0^{\theta} \mathscr{Ls}_n^{(m)} (x) \, dx = \theta \mathscr{Ls}_n^{(m)} (\theta) - \int_0^{\theta} x \, \left[ \frac{d}{dx} \mathscr{Ls}_n^{(m)} (x) \right] \,dx=\)\(\displaystyle \theta \mathscr{Ls}_n^{(m)} (\theta) + \int_0^{\theta} x^{m+1} \log^{n-m-1} \Bigg| 2 \sin \frac{\theta}{2} \Bigg| \, dx =\)\(\displaystyle \theta \mathscr{Ls}_n^{(m)} (\theta) + \int_0^{\theta} x^{m+1} \log^{(n+1)-(m+1)-1} \Bigg| 2 \sin \frac{\theta}{2} \Bigg| \, dx \)Hence we have\(\displaystyle (01) \quad \int_0^{\theta} \mathscr{Ls}_n^{(m)} (x) \, dx = \theta \mathscr{Ls}_n^{(m)} (\theta) - \mathscr{Ls}_{n+1}^{(m+1)} (\theta)\)Next, in light of the standard integral definition of the Clausen function, namely\(\displaystyle \text{Cl}_2(\theta) = -\int_0^{\theta} \log \Bigg| 2 \sin \frac{\theta}{2} \Bigg| \, dx\)we have the special case:\(\displaystyle (02) \quad \text{Cl}_2(\theta) = \mathscr{Ls}_2^{(0)} (\theta)\)As I've shown on various other threads, the following integral evaluation holds:\(\displaystyle \int_0^{\theta} \text{Cl}_2(x) \,dx = \zeta (3)- \text{Cl}_3(\theta)\)Conversely, by appealing to \(\displaystyle (01)\) and \(\displaystyle (02)\) above, we have\(\displaystyle \int_0^{\theta} \text{Cl}_2(x) \,dx = \int_0^{\theta} \mathscr{Ls}_2^{(0)} (x) \,dx = \theta \mathscr{Ls}_2^{(0)} (\theta) - \mathscr{Ls}_{3}^{(1)} (\theta)=\)\(\displaystyle \theta \text{Cl}_2(\theta) - \mathscr{Ls}_{3}^{(1)} (\theta) = \zeta (3)- \text{Cl}_3(\theta)\)Hence\(\displaystyle (03) \quad \mathscr{Ls}_{3}^{(1)} (\theta) = \text{Cl}_3(\theta) + \theta \text{Cl}_2(\theta) -\zeta(3)
\)
\)