MHB Nikki's question at Yahoo Answers regarding the Mean Value Theorem

AI Thread Summary
The discussion centers on Nikki's question about applying the Mean Value Theorem to the function f(x) = 7 - 8x² over the interval [-3, 6]. The mean slope of the function is calculated as -24. By setting the derivative f'(c) equal to this mean slope, the value of c is determined to be 1.5. The response encourages further engagement from Nikki and others to post additional calculus problems for discussion. This interaction highlights the collaborative nature of learning calculus concepts.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus 1 Help on Mean Value Theorem?

I don't know how to do this. :(

Consider the function f(x)=7-8x^2 on the interval [-3,6]. Find the average or mean slope of the function on this interval, i.e. ((f(6)-f(-3))/(6-(-3)))=

By the Mean Value Theorem, we know there exists a c in the open interval (-3,6) such that f'(c) is equal to this mean slope. For this problem, there is only one c that works. Find it.

If someone could help, that would be great! Thanks!

Here is a link to the question:

Calculus 1 Help on Mean Value Theorem? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Re: nikki's question at Yahoo! Answers regarding the Mean value Theorem

Hello nikki,

First, let's compute the slope $m$ of the secant line:

$$m=\frac{f(6)-f(-3)}{6-(-3)}=\frac{\left(7-8(6)^2 \right)-\left(7-8(-3)^2 \right)}{6+3}=\frac{8\left(-6^2+3^2 \right)}{9}=\frac{8\cdot9\left(1-2^2 \right)}{9}=8(-3)=-24$$

Now, let's compute the derivative of the given function at $x=c$ and equate this to $m$:

$$f'(c)=m$$

$$-16c=-24$$

$$c=\frac{24}{16}=\frac{3\cdot8}{2\cdot8}=\frac{3}{2}$$

To nikki and any other guest viewing this topic, I invite and encourage you to register and post other calculus problems in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top