- #1
Math100
- 802
- 221
- Homework Statement
- Prove that no integer whose digits add up to ## 15 ## can be a square or a cube.
[Hint: For any ## a ##, ## a^{3}\equiv 0, 1, ## or ## 8\pmod {9} ##.]
- Relevant Equations
- None.
Proof:
Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3, 4, 5, 6, 7 ##, or ## 8\pmod {9} ##.
This means ## a^{2}\equiv 0, 1, 4, 9, 7, 7, 0, 4 ##, or ## 1\pmod {9} ## and ## a^{3}\equiv 0, 1, 8, 0, 1, 8, 0, 1 ##, or ## 8\pmod {9} ##.
Thus ## a^{2}\equiv 0, 1, 4 ##, or ## 7\pmod {9} ## and ## a^{3}\equiv 0, 1 ##, or ## 8\pmod {9} ##.
There exists no integer ## a ## such that ## a^{2}\equiv 6\pmod {9} ## or ## a^{3}\equiv 6\pmod {9} ##.
Therefore, no integer whose digits add up to ## 15 ## can be a square or a cube.
Let ## a ## be any integer.
Then ## a\equiv 0, 1, 2, 3, 4, 5, 6, 7 ##, or ## 8\pmod {9} ##.
This means ## a^{2}\equiv 0, 1, 4, 9, 7, 7, 0, 4 ##, or ## 1\pmod {9} ## and ## a^{3}\equiv 0, 1, 8, 0, 1, 8, 0, 1 ##, or ## 8\pmod {9} ##.
Thus ## a^{2}\equiv 0, 1, 4 ##, or ## 7\pmod {9} ## and ## a^{3}\equiv 0, 1 ##, or ## 8\pmod {9} ##.
There exists no integer ## a ## such that ## a^{2}\equiv 6\pmod {9} ## or ## a^{3}\equiv 6\pmod {9} ##.
Therefore, no integer whose digits add up to ## 15 ## can be a square or a cube.