- #1
juantheron
- 247
- 1
The no. of Real Roots of the equation $\displaystyle \frac{\pi^e}{x-e}+\frac{e^\pi}{x-\pi}+\frac{\pi^{\pi}+e^{e}}{x-\pi-e} = 0$
My try:: Let $\displaystyle f(x) = \frac{\pi^e}{x-e}+\frac{e^\pi}{x-\pi}+\frac{\pi^{\pi}+e^{e}}{x-\pi-e}$
Now we will take a interval $x\in \left(e\;,\pi\right)$ and $x\in \left(\pi\;,\pi+e\right)$
$\bullet$ If $x\in (e,\pi),$ Then $(x-e) > 0$ and $(x-\pi) < 0$
So $f(x) = $
Similarly
$\bullet$ If $x\in (\pi,\pi+e),$ Then $(x-\pi) > 0$ and $(x-\pi-e) < 0$
So $f(x) = $
y Question is How Can I check Sign of $f(x)$ in Given Interval and Is Iam Thinking Right.
If Not please explain me,
Thanks
My try:: Let $\displaystyle f(x) = \frac{\pi^e}{x-e}+\frac{e^\pi}{x-\pi}+\frac{\pi^{\pi}+e^{e}}{x-\pi-e}$
Now we will take a interval $x\in \left(e\;,\pi\right)$ and $x\in \left(\pi\;,\pi+e\right)$
$\bullet$ If $x\in (e,\pi),$ Then $(x-e) > 0$ and $(x-\pi) < 0$
So $f(x) = $
Similarly
$\bullet$ If $x\in (\pi,\pi+e),$ Then $(x-\pi) > 0$ and $(x-\pi-e) < 0$
So $f(x) = $
y Question is How Can I check Sign of $f(x)$ in Given Interval and Is Iam Thinking Right.
If Not please explain me,
Thanks
Last edited: