- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey! :giggle:Let $X_1, \ldots , X_n$ be independent, identically distributed random variables with $$P(X_i=-1)=P(X_i=1)=\frac{1}{2}$$
We consider the random variables $Y_i=\max \{X_i,X_{i+1}\}$, $i=1,\ldots , n-1$.
(a) Determine the distribution of $Y_i$, $i=1,\ldots , n-1$.
(b) Calculate the expected value of $Y_i$, $i=1,\ldots , n-1$.
(c) Calculate the covariance of $Y_i$ and $Y_j$, i.e. $\text{Cov}(Y_i, Y_j)=E(Y_iY_j)-E(Y_i)E(Y_j)$, $i,j=1,\ldots , n-1$.For (a) we have :
The results for $(X_i, X_{i+1})$ each with probability $\frac{1}{4}$ are :
\begin{equation*}(-1,-1), (1,-1), (-1,1), (1,1)\end{equation*}
When we consider of the two values eeach time we get $1$ in three cases and $-1$ in one case.
So we get \begin{equation*}P(Y_i = 1) = \frac{3}{4}, \ P(Y_i=-1) = \frac{1}{4}\end{equation*}
For (b)
The expected value of $Y_i$ is \begin{equation*}E[Y_i]=1\cdot P(Y_i = 1)+(-1)\cdot P(Y_i=-1)=\frac{3}{4}-\frac{1}{4}=\frac{2}{4}=\frac{1}{2}\end{equation*}
For (c) :
The covariance of $Y_i$ and $Y_j$ is \begin{equation*}\text{Cov}(Y_i, Y_j)=E(Y_iY_j)-E(Y_i)E(Y_j)=E(Y_iY_j)-\frac{1}{2}\cdot \frac{1}{2}=E(Y_iY_j)-\frac{1}{4}\end{equation*}
When $j>i+1$ then $Y_i$ and $Y_j$ are independent and so the covariance is $0$.
How can we calculate the covariance when $j=i+1$ ?:unsure:
We consider the random variables $Y_i=\max \{X_i,X_{i+1}\}$, $i=1,\ldots , n-1$.
(a) Determine the distribution of $Y_i$, $i=1,\ldots , n-1$.
(b) Calculate the expected value of $Y_i$, $i=1,\ldots , n-1$.
(c) Calculate the covariance of $Y_i$ and $Y_j$, i.e. $\text{Cov}(Y_i, Y_j)=E(Y_iY_j)-E(Y_i)E(Y_j)$, $i,j=1,\ldots , n-1$.For (a) we have :
The results for $(X_i, X_{i+1})$ each with probability $\frac{1}{4}$ are :
\begin{equation*}(-1,-1), (1,-1), (-1,1), (1,1)\end{equation*}
When we consider of the two values eeach time we get $1$ in three cases and $-1$ in one case.
So we get \begin{equation*}P(Y_i = 1) = \frac{3}{4}, \ P(Y_i=-1) = \frac{1}{4}\end{equation*}
For (b)
The expected value of $Y_i$ is \begin{equation*}E[Y_i]=1\cdot P(Y_i = 1)+(-1)\cdot P(Y_i=-1)=\frac{3}{4}-\frac{1}{4}=\frac{2}{4}=\frac{1}{2}\end{equation*}
For (c) :
The covariance of $Y_i$ and $Y_j$ is \begin{equation*}\text{Cov}(Y_i, Y_j)=E(Y_iY_j)-E(Y_i)E(Y_j)=E(Y_iY_j)-\frac{1}{2}\cdot \frac{1}{2}=E(Y_iY_j)-\frac{1}{4}\end{equation*}
When $j>i+1$ then $Y_i$ and $Y_j$ are independent and so the covariance is $0$.
How can we calculate the covariance when $j=i+1$ ?:unsure:
Last edited by a moderator: