MHB No Real Solutions to System of Equations

AI Thread Summary
The system of equations is shown to have no real solutions through matrix algebra. By defining matrix A and calculating A squared, it results in a determinant of -1, indicating that the eigenvalues of A are imaginary (±i). This implies that the variables a, b, c, and d cannot all be real numbers. The conclusion reinforces the impossibility of finding real solutions for the given equations. The discussion highlights the effectiveness of matrix methods in solving such problems.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that the following system of equations have no real solutions:

$a^2+bd=0$

$c^2+bd=0$

$ab+bc=1$

$ad+cd=1$
 
Mathematics news on Phys.org
anemone said:
Show that the following system of equations have no real solutions:

$a^2+bd=0$

$c^2+bd=0$

$ab+bc=1$

$ad+cd=1$

from 1st 2 equations we have

$a^2=c^2$

so a = c or a = -c

now for a = c

we have

2ab = 1 and 2ad = 1 so bd and d both are same

so $a^2 + b^2 = 0$ from 1st equation so a = b = 0

hence a = b = c= d = 0 so we have contradiction in 3rd relation

if a = -c

then

ab + bc = 0 which is contradicton to 3rd relation

hence in both cases no solution
 
Solution using matrix algebra:
[sp]Let $A = \begin{bmatrix} a&b \\ d&c \end{bmatrix}$. Then $A^2 = \begin{bmatrix} a^2 + bd&ab+bc \\ ad+dc&c^2+bd \end{bmatrix} = \begin{bmatrix} 0&1 \\ 1&0 \end{bmatrix}$. The determinant of $A^2$ is $-1$, so the determinant of $A$ is $\pm i$. That is not real, so $a,b,c,d$ cannot all be real.[/sp]
 
Hi kaliprasad and Opalg!

Very well done(Yes) and thanks for participating to this challenge!:)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top