MHB Noetherian Rings - Dummit and Foote - Chapter 15 - Exercise 2a

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Exercise Rings
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
In Dummit and Foote Chapter 15 Exercise 2(a) on page 668 reads as follows:

Show that the following ring is not Noetherian by exhibiting an explicit infinite increasing chain of ideals:

- the ring of continuous real valued functions on [0, 1]I would appreciate help on this exercise.

Peter

[This has also been posted on MHF]
 
Physics news on Phys.org
Peter said:
In Dummit and Foote Chapter 15 Exercise 2(a) on page 668 reads as follows:

Show that the following ring is not Noetherian by exhibiting an explicit infinite increasing chain of ideals:

- the ring of continuous real valued functions on [0, 1]I would appreciate help on this exercise.
You could take the n'th ideal to be the set of continuous functions on [0,1] that vanish on the interval [0,1/n].
 
Another solution. Let the nth ideal be the principle ideal generated by the function $$f_n(x)=x^{1/n}$$.
 
johng said:
Another solution. Let the nth ideal be the principal ideal generated by the function $$f_n(x)=x^{1/n}$$.
That is the algebraist's solution, mine was the analyst's solution. (Handshake) (Smile)
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...
Back
Top