- #36
Dickfore
- 2,987
- 5
I think the OP should have used the canonical ensemble if the # of particles had been fixed. Then, because we are talking about indistinguishable particles, the multiplicity factor is 1. Then, the partition function should read:
[tex]
Z = \sum_{n = 0}^{N}{\exp \left[ -\beta \, (n \, \epsilon + (N - n)(-\epsilon)) \right]}
[/tex]
[tex]
Z = e^{\beta \, N \, \epsilon} \, \sum_{n = 0}^{N}{e^{-2 \, \beta \, \epsilon \, n}}
[/tex]
This is a sum of a finite geometric sequence. The result is:
[tex]
Z = e^{\beta \, \epsilon \, N} \, \frac{1 - e^{-2 \, \beta \, \epsilon \, (N + 1)}}{1 - e^{-2 \, \beta \, \epsilon}}
[/tex]
[tex]
Z = e^{\beta \, \epsilon \, N} \, \frac{e^{-\beta \, \epsilon (N + 1)} \, \left[ e^{\beta \, \epsilon \, (N + 1)} - e^{-\beta \, \epsilon (N + 1)} \right]}{e^{-\beta \, \epsilon} \, \left[ e^{\beta \, \epsilon} - e^{-\beta \, \epsilon} \right]}
[/tex]
[tex]
Z = \frac{\sinh \left[\beta \, \epsilon \, (N + 1) \right] }{ \sinh (\beta \, \epsilon) }
[/tex]
Try finding the entropy associated with this partition function!
[tex]
Z = \sum_{n = 0}^{N}{\exp \left[ -\beta \, (n \, \epsilon + (N - n)(-\epsilon)) \right]}
[/tex]
[tex]
Z = e^{\beta \, N \, \epsilon} \, \sum_{n = 0}^{N}{e^{-2 \, \beta \, \epsilon \, n}}
[/tex]
This is a sum of a finite geometric sequence. The result is:
[tex]
Z = e^{\beta \, \epsilon \, N} \, \frac{1 - e^{-2 \, \beta \, \epsilon \, (N + 1)}}{1 - e^{-2 \, \beta \, \epsilon}}
[/tex]
[tex]
Z = e^{\beta \, \epsilon \, N} \, \frac{e^{-\beta \, \epsilon (N + 1)} \, \left[ e^{\beta \, \epsilon \, (N + 1)} - e^{-\beta \, \epsilon (N + 1)} \right]}{e^{-\beta \, \epsilon} \, \left[ e^{\beta \, \epsilon} - e^{-\beta \, \epsilon} \right]}
[/tex]
[tex]
Z = \frac{\sinh \left[\beta \, \epsilon \, (N + 1) \right] }{ \sinh (\beta \, \epsilon) }
[/tex]
Try finding the entropy associated with this partition function!