- #1
LASmith
- 21
- 0
Homework Statement
A cylinder with radius R and mass M has density that increases linearly with radial distance r from the cylinder axis, ie. [itex]\rho[/itex]=[itex]\rho[/itex][itex]_{0}[/itex](r/R), where [itex]\rho[/itex][itex]_{0}[/itex] is a positive constant. Show that the moment of inertia of this cylinder about a longitudinal axis through the centre is given by I=(3MR[itex]^{3}[/itex])/5
Homework Equations
I=[itex]\int[/itex]r[itex]^{2}[/itex].dm
volume = 2[itex]\pi[/itex]rL.dr
The Attempt at a Solution
I=[itex]\int[/itex]r[itex]^{2}[/itex][itex]\rho[/itex].dv
=[itex]\int[/itex](r[itex]^{3}[/itex][itex]\rho[/itex][itex]_{0}[/itex]/R.)dv
=[itex]\int[/itex](r[itex]^{3}[/itex][itex]\rho[/itex][itex]_{0}[/itex]/R.)(2[itex]\pi[/itex]rL).dr
integrate between 0 and R to obtain
2[itex]\rho_{0}[/itex][itex]\pi[/itex]R[itex]^{4}[/itex]L/5
However, I do not understand how to express this without using the term [itex]\rho_{0}[/itex]