- #1
malamenm
- 5
- 0
Hello,
I need to
minimize {- f (x) | a <=x <= b}
where f ( x) is a concave and twice differentiable function. In addition, a and b are
positive constants such that a <b. Assume that -f (x) exists in the given interval [a, b] .
Show that
if the optimal solution is at x*= a , then delta f (a) < 0 must hold and
if the optimal solution is at x*= b * , then delta f (b) > 0 must hold.
Any help is much appreciated
I need to
minimize {- f (x) | a <=x <= b}
where f ( x) is a concave and twice differentiable function. In addition, a and b are
positive constants such that a <b. Assume that -f (x) exists in the given interval [a, b] .
Show that
if the optimal solution is at x*= a , then delta f (a) < 0 must hold and
if the optimal solution is at x*= b * , then delta f (b) > 0 must hold.
Any help is much appreciated