- #1
Go Boom Now
- 5
- 0
Sorry for having my first post be a question, I guess. I'm just confused as to how to do this since I've never really been one for word problems. I can't really type in... tex(?) either. Oh well, here we go:
In an old-fashioned amusement park ride, passengers stand inside a 5.0-m-diameter hollow steel cylinder with their backs against the wall. The cylinder begins to rotate about a vertical axis. The the floor on which the passengers are standing on suddenly drops away! If all goes well, the passengers will "stick" to the wall and not slide. Clothing has a static coefficient of friction against steel in the range of 0.60 to 1.0 and kinetic coefficient of friction in the range of 0.40 to 0.70. A sign next to the entrance says "No children under 30kg allowed." What is the minimum angular speed, in RPM, for which the ride is safe?
Kinetic Friction Force = Coefficient of Kinetic Friction x Normal Force
Static Friction Force = Coefficient of Static Friction x Normal force
F-net = mass x acceleration = (mass x (tangential velocity^2)/radius
Tangential Velocity = (2pi x radius)/period = angular velocity x radius
Check the attachment. I was following the steps my teacher outlined (FBD in r, t, z components, net force equations, solve). I'm not sure if my diagrams or FBD are correct though because the people are also involved... do I just bundle them up in the steel cylinder?
Sorry, I'm just confused.
Homework Statement
In an old-fashioned amusement park ride, passengers stand inside a 5.0-m-diameter hollow steel cylinder with their backs against the wall. The cylinder begins to rotate about a vertical axis. The the floor on which the passengers are standing on suddenly drops away! If all goes well, the passengers will "stick" to the wall and not slide. Clothing has a static coefficient of friction against steel in the range of 0.60 to 1.0 and kinetic coefficient of friction in the range of 0.40 to 0.70. A sign next to the entrance says "No children under 30kg allowed." What is the minimum angular speed, in RPM, for which the ride is safe?
Homework Equations
Kinetic Friction Force = Coefficient of Kinetic Friction x Normal Force
Static Friction Force = Coefficient of Static Friction x Normal force
F-net = mass x acceleration = (mass x (tangential velocity^2)/radius
Tangential Velocity = (2pi x radius)/period = angular velocity x radius
The Attempt at a Solution
Check the attachment. I was following the steps my teacher outlined (FBD in r, t, z components, net force equations, solve). I'm not sure if my diagrams or FBD are correct though because the people are also involved... do I just bundle them up in the steel cylinder?
Sorry, I'm just confused.