MHB Norm of Integrals: Bounding the Matrix Product

  • Thread starter Thread starter sarrah1
  • Start date Start date
  • Tags Tags
    Integrals Norm
sarrah1
Messages
55
Reaction score
0
Hi
I have an integral over [0,1] of product of two matrices say A(t). B(t) and I wish to bound its norm. Can you say that
||integral (AB)||<||B(t)||.||integral (A)|.
is there some conditions on that to occur
thanks sarrah
 
Physics news on Phys.org
Hi Sarrah,

Suppose $A(t)$ and $B(t)$ are continuous on $[0,1]$, of sizes $m \times n$ and $n \times k$, respectively. If the matrix norm is Frobenius, then

\[
\left\|\int_0^1 A(t) B(t)\, dt\right\| \le (\max_{t\in [0,1]} \|B(t)\|) \int_0^1 \|A(t)\|\, dt.
\]

To see this, note that by Minkowski's inequality,

\[
\left\|\int_0^1 A(t)B(t)\, dt\right\| \le \int_0^1 \|A(t)B(t)\|\, dt \qquad (1)
\]

Since the Frobenius norm is submultiplicative,

\[
\|A(t)B(t)\| \le \|A(t)\| \|B(t)\| \le (\max_{t\in [0,1]} \|B(t)\|) \|A(t)\|
\]

for all $t$ in $[0,1]$. Hence

\[
\int_0^1 \|A(t)\| \|B(t)\|\, dt \le (\max_{t\in [0,1]} \|B(t)\|) \int_0^1 \|A(t)\|\, dt. \qquad (2)
\]

The result is obtained by combining (1) and (2).
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top