- #1
anothersnail
- 3
- 0
My model is a lever on a table top. One arm is horizontal on the table, while the other arm is raised at an angle alpha. I'm assuming the weight of the horizontal lever (F) acts at its center of gravity at a distance f from the pivot, while the weight of the raised lever (W) acts at its center of gravity at a distance s from the pivot. Finally, the normal force is N. At static equilibrium the torque equation would be:
f x F - N = s x W x Cos α
To simplify the equation, I need to eliminate the normal force.
Can I assume that the torque of the raised lever (s x W x Cos α) is such that it ever so slightly exceeds the term (f x F), so that N is approximately zero yet the system still remains at static equilibrium? I realize this is a contradiction of terms, but I can't think of another way to assume N=0.
Any suggestions will be appreciated.
Stan
f x F - N = s x W x Cos α
To simplify the equation, I need to eliminate the normal force.
Can I assume that the torque of the raised lever (s x W x Cos α) is such that it ever so slightly exceeds the term (f x F), so that N is approximately zero yet the system still remains at static equilibrium? I realize this is a contradiction of terms, but I can't think of another way to assume N=0.
Any suggestions will be appreciated.
Stan