- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
I have the following exercise:
Write in the normal form the differential equation
$$u_{xx}+\frac{2y}{x}u_{xy}+\frac{y^2}{x^2}[(1+y^2)u_{yy}+2yu_y]=0$$
Hint: You can suppose that the one new variable is given by $\xi=x$
I have done the following:
$a=1, b=\frac{y}{x}, c=\frac{y^2}{x^2}(1+y^2)$
$b^2-ac=\frac{y^2}{x^2}-\frac{y^2}{x^2}(1+y^2)=-\frac{y^4}{x^2}=(\frac{y^2}{x}i)^2<0$
So the differential equation is elliptic.
$\frac{dy}{dx}=\frac{1}{a}(b \pm \sqrt{b^2-ac})$
$\frac{dy}{dx}=\frac{y}{x} \pm \frac{y^2}{x}i$
Is it correct so far?
How can I use the hint?
I have the following exercise:
Write in the normal form the differential equation
$$u_{xx}+\frac{2y}{x}u_{xy}+\frac{y^2}{x^2}[(1+y^2)u_{yy}+2yu_y]=0$$
Hint: You can suppose that the one new variable is given by $\xi=x$
I have done the following:
$a=1, b=\frac{y}{x}, c=\frac{y^2}{x^2}(1+y^2)$
$b^2-ac=\frac{y^2}{x^2}-\frac{y^2}{x^2}(1+y^2)=-\frac{y^4}{x^2}=(\frac{y^2}{x}i)^2<0$
So the differential equation is elliptic.
$\frac{dy}{dx}=\frac{1}{a}(b \pm \sqrt{b^2-ac})$
$\frac{dy}{dx}=\frac{y}{x} \pm \frac{y^2}{x}i$
- $$\frac{dy}{dx}=\frac{y+y^2i}{x} \Rightarrow \frac{dy}{y(1+yi)}=\frac{dx}{x} \Rightarrow \frac{1}{y(1+yi)}=\frac{1}{x}+c_1 \Rightarrow \frac{1}{y(1+y^2)}-\frac{1}{x}-\frac{1}{1+y^2}i=c_1$$
- $$\frac{dy}{dx}=\frac{y-y^2i}{x} \Rightarrow \frac{dy}{y(1+yi)}=\frac{dx}{x} \Rightarrow \frac{1}{y(1-yi)}=\frac{1}{x}+c_2 \Rightarrow \frac{1}{y(1+y^2)}-\frac{1}{x}+\frac{1}{1+y^2}i=c_2$$
Is it correct so far?
How can I use the hint?