I Normalization of an Eigenvector in a Matrix

Dwye
Messages
2
Reaction score
0
TL;DR Summary
I am working through some linear algebra questions in the Griffith's Book "Introduction to Quantum Mechanics", and I am unsure why a constant of 1/sqrt(2) is added into the answer.
I understand that the question is detailing a rotation about axis x & y, and that 1/sqrt(2) is the value of 45 degrees for both Sin and Cos, is this the reason for the addition; a generalization?
In fact I have seen this number quite a lot in Quantum Mechanics, is there something more to this number?
ProblemA.18.JPG
AnswerA.18.JPG
 
Physics news on Phys.org
Do you know, how to get the norm of a vector in ##\mathbb{C}^2## or, more generally, how to define a scalar product on a complex vector space? It's very important to get these concepts right, before starting to study quantum theory, for which you need the "infinite-dimensional version" of these ideas, the socalled (separable) Hilbert space (more precisely what physicists do with this is rather the extension to a "rigged Hilbert space").
 
Dwye said:
Summary:: I am working through some linear algebra questions in the Griffith's Book "Introduction to Quantum Mechanics", and I am unsure why a constant of 1/sqrt(2) is added into the answer.
I understand that the question is detailing a rotation about axis x & y, and that 1/sqrt(2) is the value of 45 degrees for both Sin and Cos, is this the reason for the addition; a generalization?
In fact I have seen this number quite a lot in Quantum Mechanics, is there something more to this number?

The vector ##(1, i)## has magnitude ##\sqrt 2##, so Griffiths decided to normalise it. The question doesn't actually ask for a normalised eigenvector, so ##(1, i)## would be just as valid an answer.

In QM it's generally a good idea to normalise vectors. The factor here has nothing directly to do with being the sine of ##45°##. If the eigenvector were ##(1, 2i)##, then the normalisation factor would be ##\frac 1 {\sqrt{5}}##.
 
  • Like
Likes vanhees71 and Dwye
PeroK said:
The vector ##(1, i)## has magnitude ##\sqrt 2##, so Griffiths decided to normalise it. The question doesn't actually ask for a normalised eigenvector, so ##(1, i)## would be just as valid an answer.

In QM it's generally a good idea to normalise vectors. The factor here has nothing directly to do with being the sine of ##45°##. If the eigenvector were ##(1, 2i)##, then the normalisation factor would be ##\frac 1 {\sqrt{5}}##.
PeroK said:
The vector ##(1, i)## has magnitude ##\sqrt 2##, so Griffiths decided to normalise it. The question doesn't actually ask for a normalised eigenvector, so ##(1, i)## would be just as valid an answer.

In QM it's generally a good idea to normalise vectors. The factor here has nothing directly to do with being the sine of ##45°##. If the eigenvector were ##(1, 2i)##, then the normalisation factor would be ##\frac 1 {\sqrt{5}}##.
Thank you very much!
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
This is still a great mystery, Einstein called it ""spooky action at a distance" But science and mathematics are full of concepts which at first cause great bafflement but in due course are just accepted. In the case of Quantum Mechanics this gave rise to the saying "Shut up and calculate". In other words, don't try to "understand it" just accept that the mathematics works. The square root of minus one is another example - it does not exist and yet electrical engineers use it to do...
Back
Top