- #1
Anton02
- 1
- 0
- Homework Statement
- Given the Spin Operator $$\hat{\vec{S}}=\frac{\hbar}{2}\hat{\vec{\sigma}}$$ with the Pauli matrices $$\hat{\vec{\sigma}}$$ calculate the Normalizationconstant A for the given Spinstate $$\chi$$
- Relevant Equations
- $$\chi=A\begin{pmatrix}
3i\\
4
\end{pmatrix}$$
$$\sigma_x=\begin{pmatrix}
0 & 1\\
1 & 0
\end{pmatrix}$$
$$\sigma_y=\begin{pmatrix}
0 & -i\\
i & 0
\end{pmatrix}$$
$$\sigma_z=\begin{pmatrix}
1 & 0\\
0 &-1
\end{pmatrix}$$
I don't really know where to begin.
1. idea: For a spatial wave funtion I'd have to calculate the integral over dxdydz for -inf to +inf. But that doesn't seem very reasonable to me here.
$$\int \chi dxdydz=\int A\begin{pmatrix}
3i\\
4
\end{pmatrix} dxdydz$$
Do have to substitute dxdydz with something and get the pauli matrizes involved?
2. idea: If I treat the spinstate like a regular vector the norm would just be $$\sqrt{3i^2+4^2}=\sqrt{16-9}=\sqrt{5}$$. But can I treat a spinstate like this?
1. idea: For a spatial wave funtion I'd have to calculate the integral over dxdydz for -inf to +inf. But that doesn't seem very reasonable to me here.
$$\int \chi dxdydz=\int A\begin{pmatrix}
3i\\
4
\end{pmatrix} dxdydz$$
Do have to substitute dxdydz with something and get the pauli matrizes involved?
2. idea: If I treat the spinstate like a regular vector the norm would just be $$\sqrt{3i^2+4^2}=\sqrt{16-9}=\sqrt{5}$$. But can I treat a spinstate like this?