- #1
Lagrange fanboy
- 9
- 2
- TL;DR Summary
- Confusion over an equation on page 256 of Quantum Mechanics - The Theoretical Minimum
So on page 256 of Quantum Mechanics - The Theoretical Minimum, it says that the wave function of a momentum eigenvector, with respect to the position eigenbasis is ##\psi_p(x)=Ae^{\frac{ipx}{\hbar}}##, and ##A## must be ##\frac{1}{\sqrt{2\pi}}## to keep it a unit vector. However why must ##A=\frac{1}{\sqrt {2\pi}}##? ##\bar \psi_p=\bar Ae^{-\frac{ipx}{\hbar}}##, so ##| \psi_p|^2=A\bar A=|A|^2##. Plugging in ##A=\frac{1}{\sqrt{2\pi}}## that means ##\int_{-\infty}^\infty \psi_p\bar\psi_p dx= \int_{-\infty}^\infty \frac{1}{2\pi}dx\not = 1##