- #1
G_Mallard
- 7
- 0
Hello all, I am posting this question here in this thread and not the homework thread since it is not a homework problem but something I have been working on myself.
Let us imagine a fluid flowing through a pipe, we can measure pipe diameter and fluid velocity. The density of the fluid is also known. So we can measure Q and Mf, or volumetric and mass flow respectively:
Q = Av
Mf = ρQ = ρAv
where A is crossectional area of the pipe, v is fluid velocity, and ρ is density.
Units of Q are in m3/s and units of Mf are in kg/s. We can now calculate for pressure, assuming no other forces on the system, we have:
P = F/A = ma/A = [(MfΔt)(Δv/Δt)] /A = [(ρAvΔt)(Δv/Δt)]/A = ρvΔν
Δt is some arbitrary chosen time step and the units above work out to kg/ms2 so I know I am calculating for pressure. My problem is that I am not sure exactly what pressure I am calculating. I don't think this is the pressure that the fluid is under i.e. relative to the outside pressure.
Any assistance in understanding exactly what pressure I am calculating by using mass flow would be greatly appreciated. Thanks
-GM
Let us imagine a fluid flowing through a pipe, we can measure pipe diameter and fluid velocity. The density of the fluid is also known. So we can measure Q and Mf, or volumetric and mass flow respectively:
Q = Av
Mf = ρQ = ρAv
where A is crossectional area of the pipe, v is fluid velocity, and ρ is density.
Units of Q are in m3/s and units of Mf are in kg/s. We can now calculate for pressure, assuming no other forces on the system, we have:
P = F/A = ma/A = [(MfΔt)(Δv/Δt)] /A = [(ρAvΔt)(Δv/Δt)]/A = ρvΔν
Δt is some arbitrary chosen time step and the units above work out to kg/ms2 so I know I am calculating for pressure. My problem is that I am not sure exactly what pressure I am calculating. I don't think this is the pressure that the fluid is under i.e. relative to the outside pressure.
Any assistance in understanding exactly what pressure I am calculating by using mass flow would be greatly appreciated. Thanks
-GM