Notation of the approximation in quantum phase estimation algorithm

In summary, the conversation discusses the notation and definitions of approximation in the quantum phase estimation algorithm. Two cases are presented, with different definitions of the variable delta. In both cases, examples are provided to show how the approximation is calculated. The final question asks for opinions on why the first definition of delta, which is less accurate according to the calculations, is also used in literature. The individual hopes for helpful tips and clarification on their question.
  • #1
Peter_Newman
155
11
I'am interested in the notation of the approximation in quantum phase estimation algorithm.
In the literature there are different definitions, which I divide into two cases here. Both different in their definition of the ##\delta##. In both cases I start with a quote of the source and show an example of how I understand this in that context.

Let ##\phi_\text{exact} = \varphi_\text{exact} = 0.1011_2## in this scenario we limit our approximation of the phase (##\varphi,\phi##) to 2 Bits.

Case 1:

... let ##\frac{a}{2^m} = 0.a_1...a_m## be the best ##m##-bit estimate of ##\phi##. Then ##\phi = \frac{a}{2^m} + \delta##, where ##0<|\delta|\leq \frac{1}{2^{m+1}}## [Cleve et al. from quant-ph/9708016, p11]

With ##m = 2## Bits e.g. best we can get with ##0 < |\delta| \leq \frac{1}{2^{m+1}}## is:

##\phi_\text{approx} = 0.10_2 + (-0.001_2 \leq \delta \leq 0.001_2) = 0.10_2 + 0.001_2##, since maximum value of ##\delta## is ##\frac{1}{2^3} = 0.001_2##, we leave out ##0.0001## in case of ##\delta## as defined above. I assumed ##0.10_2## is the best estimate we can get with two bits.

Case 2:

Let ##b## be the integer in the range ##0## to ##2^t−1## such that ##b/2^t = 0.b_1 ... b_t## is the best ##t## bit approximation to ##\varphi## which is less than ##\varphi##. That is, the difference ##\delta ≡ \varphi − b/2^t## between
##\varphi## and ##b/2^t## satisfies ##0 ≤ \delta ≤ 2^{−t}##. [Nielsen and Chuang from QC, p223]

With ##t = 2## Bits e.g. best we can get with ##0 < \delta \leq \frac{1}{2^{t}}## is:

##\varphi_\text{approx} = 0.10_2 + (0 < \delta \leq 0.01_2)= 0.10_2 + 0.0011_2##, we see with ##\delta## defined in this way, we get a better approximation. We can at least describe the missing part of delta here exactly. I assumed ##0.10_2## is the best estimate we can get with two bits.My final question is, why do people in the literature also use the first definition of delta (##0<|\delta|\leq \frac{1}{2^{m+1}}##), which would be more inaccurate according to my calculation?I hope that I have written my question understandably and I am very much looking forward to your opinions on this.
 
Last edited:
Physics news on Phys.org
  • #2
Unfortunately, I haven't made any progress myself, otherwise I would have presented a solution here. Therefore, I am still interested in helpful tips and hints. Is the question so far clear, or is there a need to concretize it a bit?
 

Similar threads

Back
Top