- #1
Deleted member 690984
Me again!
For a sci-fi story I'm working on, I've created a sci-fi technology called an Aneutronic Triple Alpha Fusion Reactor. It works via aneutronic fusion, in this case, fusing Deuterium with Helium 3, but it also mimics the triple alpha process found within stars to maximise fuel use. Fusing deuterium with helium 3 produces a single Helium-4 atom; the reactor then fuses the resultant Helium-4 atoms together to create Carbon-12, which is essentially the reactor's waste product.
As I understand it, fusing deuterium with helium 3 produces 18.3 MeV of energy, while fusing Helium-4 together produces a net energy of 7.275 MeV (as I understand that fusing two Helium-4s together is actually an energy loss, but fusing the resultant Beryllium-8 atom with another Helium-4 is what gets you Carbon-12, releasing energy).
Anyway, I want to calculate what the power output of such a reactor would be. Obviously I can just make up a power output in terms of how much power these things produce per hour, but I want to know how much fuel I would need, so I need to know the energy density of the fuel and how much energy it would produce on a large scale.
Could someone help with the calculations as to how much, say, 1kg of deuterium fused with 1kg of helium-3 would produce? It also needs to be accounted for that 1/3 of that fuel mass will also be fused to carbon-12.
@jbriggs444 - you were a huge help on my engine calculations, would you be able to help here?
I read that 1kg of deuterium contains about 3x10^26 atoms, containing about 845 terajoules of energy. However I can't seem to find similar figures for helium-3.
For a sci-fi story I'm working on, I've created a sci-fi technology called an Aneutronic Triple Alpha Fusion Reactor. It works via aneutronic fusion, in this case, fusing Deuterium with Helium 3, but it also mimics the triple alpha process found within stars to maximise fuel use. Fusing deuterium with helium 3 produces a single Helium-4 atom; the reactor then fuses the resultant Helium-4 atoms together to create Carbon-12, which is essentially the reactor's waste product.
As I understand it, fusing deuterium with helium 3 produces 18.3 MeV of energy, while fusing Helium-4 together produces a net energy of 7.275 MeV (as I understand that fusing two Helium-4s together is actually an energy loss, but fusing the resultant Beryllium-8 atom with another Helium-4 is what gets you Carbon-12, releasing energy).
Anyway, I want to calculate what the power output of such a reactor would be. Obviously I can just make up a power output in terms of how much power these things produce per hour, but I want to know how much fuel I would need, so I need to know the energy density of the fuel and how much energy it would produce on a large scale.
Could someone help with the calculations as to how much, say, 1kg of deuterium fused with 1kg of helium-3 would produce? It also needs to be accounted for that 1/3 of that fuel mass will also be fused to carbon-12.
@jbriggs444 - you were a huge help on my engine calculations, would you be able to help here?
I read that 1kg of deuterium contains about 3x10^26 atoms, containing about 845 terajoules of energy. However I can't seem to find similar figures for helium-3.