- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
Let $p$ an odd prime and $F=F_{p^n}$ the finite field with $p^n$ elements.
1. Show that the set $F^2=\{a^2, a \in F\}$ has $\frac{p^n+1}{2}$ elements. Conclude that , if $t \in F$ the set $t-F^2=\{t-a^2, a \in F\}$ has $\frac{p^n+1}{2}$ elements.
2. For $t \in F$ show taht the set $F^2 \cap (t-F^2)$ is non-empty and conclude that each element $c$ of $F$ can be written in the form $c=a^2+b^2, a, b \in F$.
3. Show that the equation $x^2+y^2+z^2=0$ has a non-trivial solution in $F$.
I have done the following:
1. $a^2 \in F^2 \Rightarrow a, -a \in F$
That means that $F^2$ contains the half of the elements of $F\setminus \{0\}$, and the element $0$.
So, the number of elements of $F^2$ is $\frac{p^n-1}{2}+1=\frac{p^n-1+2}{2}=\frac{p^n+1}{2}$.
Is this correct?? (Wondering)
How can I show that conclude that if $t \in F$ the set $t-F^2=\{t-a^2, a \in F\}$ has $\frac{p^n+1}{2}$ elements??
2. Let $x \in F^2 \cap (t-F^2) \Rightarrow x=F^2 \text{ AND } x \in t-F^2 \\ \Rightarrow x=a^2, a \in F \text{ AND } x=t-a^2, t, a \in F$
How can I continue?? (Wondering)
3. We set $z=1$, then we have the equation $x^2+y^2+1=0 \Rightarrow x^2=-1-y^2$.
Does $-1 \in F$ ?? (Wondering)
Then we could use the question $2.$, right?? (Wondering)
Let $p$ an odd prime and $F=F_{p^n}$ the finite field with $p^n$ elements.
1. Show that the set $F^2=\{a^2, a \in F\}$ has $\frac{p^n+1}{2}$ elements. Conclude that , if $t \in F$ the set $t-F^2=\{t-a^2, a \in F\}$ has $\frac{p^n+1}{2}$ elements.
2. For $t \in F$ show taht the set $F^2 \cap (t-F^2)$ is non-empty and conclude that each element $c$ of $F$ can be written in the form $c=a^2+b^2, a, b \in F$.
3. Show that the equation $x^2+y^2+z^2=0$ has a non-trivial solution in $F$.
I have done the following:
1. $a^2 \in F^2 \Rightarrow a, -a \in F$
That means that $F^2$ contains the half of the elements of $F\setminus \{0\}$, and the element $0$.
So, the number of elements of $F^2$ is $\frac{p^n-1}{2}+1=\frac{p^n-1+2}{2}=\frac{p^n+1}{2}$.
Is this correct?? (Wondering)
How can I show that conclude that if $t \in F$ the set $t-F^2=\{t-a^2, a \in F\}$ has $\frac{p^n+1}{2}$ elements??
2. Let $x \in F^2 \cap (t-F^2) \Rightarrow x=F^2 \text{ AND } x \in t-F^2 \\ \Rightarrow x=a^2, a \in F \text{ AND } x=t-a^2, t, a \in F$
How can I continue?? (Wondering)
3. We set $z=1$, then we have the equation $x^2+y^2+1=0 \Rightarrow x^2=-1-y^2$.
Does $-1 \in F$ ?? (Wondering)
Then we could use the question $2.$, right?? (Wondering)