- #1
juantheron
- 247
- 1
Nymber of all positive continuous function $f(x)$ in $\left[0,1\right]$ which satisfy $\displaystyle \int^{1}_{0}f(x)dx=1$ and $\displaystyle \int^{1}_{0}xf(x)dx=\alpha$ and $\displaystyle \int^{1}_{0}x^2f(x)dx=\alpha^2$Where $\alpha$ is a given real numbers.My trial:: Using Addition and Subtraction, I am getting $\displaystyle \int^{1}_{0}(x-1)^2f(x)dx=(\alpha-1)^2$ now how can I solve it, Help required, Thanks