MHB Number of Positive Integer Pairs for Perfect Squares

AI Thread Summary
The discussion revolves around finding ordered pairs of positive integers \(x\) and \(y\) such that both \(x^2 + 3y\) and \(y^2 + 3x\) are perfect squares. Initial attempts to solve the equations led to no valid pairs, but further exploration suggested that pairs like \((1,1)\), \((2,4)\), and others yield perfect squares. The conversation highlights the need to express \(x\) and \(y\) in terms of other variables to identify valid integer solutions. Ultimately, the thread concludes that there are indeed infinite pairs that satisfy the conditions.
juantheron
Messages
243
Reaction score
1
the number of ordered pairs of positive integers $x,$y such that $x^2 +3y$ and $y^2 +3x$

are both perfect squares

my solution::

http://latex.codecogs.com/gif.latex?\hspace{-16}$Let%20$\bf{x^2+3y=k^2}$%20and%20$\bf{y^2+3x=l^2}$\\%20Where%20$\bf{x,y,k,l\in%20\mathbb{Z^{+}}}$\\%20$\bf{(x^2-y^2)-3(x-y)=k^2-l^2}$\\%20$\bf{(x-y).(x+y-3)=(k+l).(k-l)}$\\%20$\bullet\;\;%20\bf{(x-y)=k+l\;\;,(x+y-3)=k-l}$\\%20$\bullet\;\;%20\bf{(x-y)=k-l\;\;,(x+y-3)=k+l}$\\%20So%20$\bf{x=\frac{2k+3}{2}\notin%20\mathbb{Z^{+}}}$\\%20and%20$\bf{y=\frac{-2l+3}{2}\notin%20\mathbb{Z^{+}}}$\\

no possibilities.

but there is also more possibilities

like $(x-y).(x+y-3) = 1 \times (k^2-l^2) = (k^2-l^2) \times 1$

My Question is that is any pairs for which $x^2+3y$ and $3x^2+y$ are perfect square

Thanks
 
Mathematics news on Phys.org
We have $x^2+3y=(x+a)^2$ for some positive integer $a$ and similar for $y$ and some $b$. Express $x$ and $y$ through $a$ and $b$ and see when $x$ and $y$ are positive integers.
 
what about $(1,1)$?
 
jacks said:
the number of ordered pairs of positive integers $x,$y such that $x^2 +3y$ and $y^2 +3x$

. . . .

My Question is that is any pairs for which $x^2+3y$ and $3x^2+y$ are perfect square

Thanks
I think you just changed the question.
 
jacks said:
My Question is that is any pairs for which $x^2+3y$ and $3x^2+y$ are perfect square
Of course; infinite:
1,1
2,4
3,9
4,16
5,25
...and on...
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top