MHB Number of real roots in polynomial equation

  • Thread starter Thread starter juantheron
  • Start date Start date
  • Tags Tags
    Polynomial Roots
juantheron
Messages
243
Reaction score
1
Evaluate number of real roots of the equation $$x^6-x^5+x^4-x^3+x^2-x+\frac{2}{5} = 0$$
 
Mathematics news on Phys.org
jacks said:
Evaluate number of real roots of the equation $$x^6-x^5+x^4-x^3+x^2-x+\frac{2}{5} = 0$$

My solution:

Let $$f(x)=x^6-x^5+x^4-x^3+x^2-x+\frac{2}{5}$$

And then:

$$f'(x)=6x^5-5x^4+4x^3-3x^2+2x-1$$

$$f''(x)=30x^4-20x^3+12x^2-6x+2$$

$$f'''(x)=120x^3-60x^2+24x-6$$

$$f^{(4)}(x)=360x^2-120x+24$$

The 4th derivative has a negative discriminant, therefore as an upward opening parabolic function, is positive for all $x$. This means the third derivative is strictly increasing and can have only 1 real root. Using a numeric root-finding technique, we find this root is approximated by:

$$x\approx0.342384094858369$$

We then look at:

$$f''(0.342384094858369)=0.961949707437654530>0$$

This means we may conclude that the 2nd derivative is positive for all $x$, and so the first derivative is strictly increasing with only 1 real root, which we find at about:

$$x\approx0.67033204760309682774$$

We then look at:

$$f(0.67033204760309682774)=0.03509389397174151671752$$

And so we conclude that for all real $x$, we have $f(x)>0$, and thus $f$ has no real roots.
 
Another way:

If $p(x)=x^6-x^5+x^4-x^3+x^2-x+\dfrac{2}{5}$ then $p(-x)=x^6+x^5+x^4+x^3+x^2+x+\dfrac{2}{5}$ and by the Descartes' Rule of Signs there are no negative roots for $p(x)$.

On the other hand, if $f(x)=a_nx^n+\ldots +a_1x+a_0\in\mathbb{R}[x]$ with $a_n\neq 0$ and $c$ a root of de $f(x)$ then $|c|\leq M$ where $$M=\max\left \{\left(n\left| \frac{a_{i-1}}{a_n}\right|\right)^{1/i}:i=1,\ldots,n\right\}.$$ Now, we can use the Sturm's Theorem on the closed interval $\left[0,\lfloor M\rfloor +1\right].$
 
My Solution::

$\bullet\; $ If $x\leq 0\;,$ Then $\displaystyle f(x) = x^6-x^5+x^4-x^3+x^2-x+\frac{2}{5}>0$

$\bullet\; $ If $x\geq 1\;,$ Then $\displaystyle f(x) = x^5(x-1)+x^3(x-1)+x(x-1)+\frac{2}{5}>0$

$\bullet \; 0<x<1\;,$ Let $\displaystyle f(x)-\frac{2}{5} = x^6-x^5+x^4-x^3+x^2-x=x(x-1)(x^4+x^2+1)$

So $\displaystyle f(x)-\frac{2}{5} = -x(1-x)(1+x+x^2)(1-x+x^2) = -(1-x^3)(x-x^2+x^3)$

So $\displaystyle -f(x)+\frac{2}{5} = (1-x^3)(x-x^2+x^3) \leq \left(\frac{1-x^3+x-x^2+x^3}{2}\right)^2$

So $\displaystyle -f(x)+\frac{2}{5}\leq \left(\frac{x-x^2+1}{2}\right)^2 = \frac{1}{64}\left(4x-4x^2+4\right)^2$

So $\displaystyle -f(x)+\frac{2}{5} \leq \frac{1}{64}\left(5-(2x-1)^2\right) \leq \frac{25}{64}$

So $\displaystyle -f(x)+\frac{2}{5}\leq \frac{25}{64}\Rightarrow f(x)-\frac{2}{5}\geq \frac{25}{64}$

So $\displaystyle f(x)\geq \frac{2}{5}-\frac{25}{64} = \frac{3}{320}>0$

So $\displaystyle f(x) = x^6-x^5+x^4-x^3+x^2-x+\frac{2}{5}>0\;\forall x \in \mathbb{R}$
 
Last edited by a moderator:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top