- #1
hxthanh
- 16
- 0
Number of solutions
Le $n$ be a positive integer $(n\ge 6)$
How many triad $(a,b,c)$ are integers satisfying condition
$\begin{cases}a+b+c\equiv 0\pmod n\\ 1\le a<b<c\le n \end{cases}\quad$?
[sp]
Result: $\left\lceil\dfrac{(n-1)(n-2)}{6}\right\rceil$
*note: $\lceil x\rceil$ is Ceilling Function (The least integer greater than or equal to $x$)
[/sp]
Le $n$ be a positive integer $(n\ge 6)$
How many triad $(a,b,c)$ are integers satisfying condition
$\begin{cases}a+b+c\equiv 0\pmod n\\ 1\le a<b<c\le n \end{cases}\quad$?
[sp]
Result: $\left\lceil\dfrac{(n-1)(n-2)}{6}\right\rceil$
*note: $\lceil x\rceil$ is Ceilling Function (The least integer greater than or equal to $x$)
[/sp]
Last edited: