- #1
TheSodesa
- 224
- 7
Homework Statement
This is a combination of two questions, one being the continuation of the other
3) Calculate the DFT of the sequence of measurements
\begin{equation*}
\{ g \}_{k=0}^{5} = \{ 1,0,4,-1,0,0 \}
\end{equation*}
4a) Draw the DFT calculated in question 3 on the complex plane.
4b) What are the members of the sequence:
\begin{equation*}
G_7, G_{11}, G_{14}, G_{22},G_{-7}, G_{-11}, G_{-14}, G_{-22}
\end{equation*}
Homework Equations
The assumed values of the unknown function are the sequence
\begin{equation}
g_k = f\left(\frac{kT}{N} \right), k = 0, 1, 2, \ldots, N-1,
\end{equation}
mentioned above, where ##N## is the number of subdivisions in the Riemann integral used to approximate the coefficients ##c_n## of the Fourier series of the unknown function ##f##.
Each member, ##G_n##, of the DFT is calculated as follows:
\begin{equation}
G_n = \sum_{k=0}^{N-1} g_k e^{-jnk\frac{2\pi}{N}}, n = 0, 1, 2, \ldots, N-1
\end{equation}
The Attempt at a Solution
Questions ##3## and ##4a## were not problematic at all. The DFT was
\begin{align*}
G_0 = \sum_{k=0}^{5} g_k e^{0} &= 1 + 0 + 4 - 1 + 0 + 0 = 4,\\
%
G_1 = \sum_{k=0}^{5} g_k e^{-jk\frac{2\pi}{6}} &= 1 e^{0} + 0 + 4 e^{-j2\frac{2\pi}{6}} - 1 e^{-j3\frac{2\pi}{6}}\\
&= 1 + 4 e^{-j\frac{2\pi}{3}} + 1 \\
&= 2 + 4 e^{-j\frac{2\pi}{3}}\\
%
G_2 = \sum_{k=0}^{5} g_k e^{-j2k\frac{2\pi}{6}} &= 1 + 0 + 4 e^{-j2\frac{4\pi}{6}} - 1 e^{-j3\frac{4\pi}{6}}\\
&= 1 + 4 e^{j\frac{2\pi}{3}} - 1\\
&= 4 e^{j\frac{2\pi}{3}}\\
%
G_3 = \sum_{k=0}^{5} g_k e^{-j3k\frac{2\pi}{6}} &= 1 + 0 + 4 e^{-j2\pi} - 1 e^{-j3\pi}\\
&= 1 + 4 + 1 = 6\\
G_4 = \sum_{k=0}^{5} g_k e^{-j4k\frac{2\pi}{6}} &= 1 + 0 + 4 e^{-j2\frac{4\pi}{3}} - 1 e^{-j3\frac{4\pi}{3}}\\
&= 1 + 4 e^{-j\frac{8\pi}{3}} - 1\\
&= 4 e^{-j\frac{2\pi}{3}}\\
G_5 = \sum_{k=0}^{5} g_k e^{-j5k\frac{2\pi}{6}} &= 1 + 0 + 4 e^{-j2\frac{5\pi}{3}} - 1 e^{-j3\frac{5\pi}{3}}\\
&= 1 + 4 e^{-j\frac{10\pi}{3}} - 1 e^{-j5\pi}\\
&= 2 + 4 e^{j\frac{2\pi}{3}}
\end{align*}
Based on these, I drew the following images
##n## seems to go all the way up to ##22## and down to ##-22##, which to my mind seems to imply, that ##N=23## or ##N=46##.
I'm also assuming, that the sequence ##\{ g \}_{k=0}^{5}## doesn't change, since I'm not given any new information regarding this, but I'm not sure of this either.
So, what is ##N##, exactly?
EDIT: Added labels on the points in the pictures.
Last edited: