- #1
mathsss2
- 38
- 0
I posted this question but I am not getting anywhere with this question, any help would be very appreciated:
1. let [tex]p[/tex] be odd prime explain why: [tex]2*4*...*(p-1)\equiv (2-p)(4-p)*...*(p-1-p)\equiv(-1)^{(p-1)/2}*1*3*...*(p-2)[/tex] mod [tex]p[/tex].
2. Using number 2 and wilson's thereom [[tex](p-1)!\equiv-1[/tex] mod p] prove [tex]1^23^25^2*...*(p-2)^2\equiv(-1)^{(p-1)/2}[/tex] mod [tex]p[/tex]
Thanks.
1. let [tex]p[/tex] be odd prime explain why: [tex]2*4*...*(p-1)\equiv (2-p)(4-p)*...*(p-1-p)\equiv(-1)^{(p-1)/2}*1*3*...*(p-2)[/tex] mod [tex]p[/tex].
2. Using number 2 and wilson's thereom [[tex](p-1)!\equiv-1[/tex] mod p] prove [tex]1^23^25^2*...*(p-2)^2\equiv(-1)^{(p-1)/2}[/tex] mod [tex]p[/tex]
Thanks.