- #1
WWCY
- 479
- 12
Homework Statement
I have the following integral I wish to solve (preferably analytically):
$$ I(x,t) = \int_{-\infty}^{0} \exp{[-(\sigma^2 + i\frac{t}{2})p^2 + (2\sigma ^2 p_a + ix)p]} \ dp$$
where ##x## ranges from ##-\infty## to ##\infty## and ##t## from ##0## to ##\infty##. ##\sigma## and ##p_a## are positive and real
letting ##(\sigma^2 + i\frac{t}{2}) = g## and ##(2\sigma ^2 p_0 + ix) = h##,
$$I(x,t) = \int_{-\infty}^{0} e^{-(gp^2 - hp)} \ dp$$
Thus far, I have tried writing this in the form of ##\text{erf}## but it becomes eye-wateringly complex (I will write my attempt below). Are there any more efficient ways to compute this integral, either numerically or analytically?
Thanks very much in advance for any assistance.
Homework Equations
The Attempt at a Solution
I simplify the integral by completing the square, which gives:
$$e^{\frac{h^2}{4g}} \int_{-\infty}^{0} e^{-(\sqrt{g}p \ - \frac{h}{2\sqrt{g}})^2} \ dp$$
I then change variables with ##t = (\sqrt{g}p \ - \frac{h}{2\sqrt{g}})##, giving
$$\frac{e^{\frac{h^2}{4g}}}{\sqrt{g}} \int_{z_2}^{z_1} e^{-t^2} \ dt$$
with ##z_1 = - \ \frac{h}{2\sqrt{g}}## and ## z_2 = \lim_{\ p \to -\infty } (\sqrt{g}p \ - \frac{h}{2\sqrt{g}}) ##
I then write this in term of the error function
$$I = \frac{\sqrt{\pi}}{2 } \ \frac{e^{\frac{h^2}{4g}}}{\sqrt{g}} \Big[ \text{erf} (z_1) - \text{erf} (z_2) \Big]$$
However, I am unable to determine whether or not the term ##\text{erf} (z_2)## converges or diverges, or indeed what its value is.