- #1
choppu
- 10
- 0
Hi, I have got a coupled Differential equation :
[tex]
\ x_1''\ =\ \frac{F_1}{M_1}\ =\ \gamma\cdot{}\left[-\,\frac{M_S}{|\overrightarrow{x_1}|^3}\cdot{}\overrightarrow{x_2}+\frac{M_2}{|\overrightarrow{x_2-x_1}|^3}\cdot{}(\overrightarrow{x_2-x_1})\right]
[/tex]
[tex]
\ x_2''\ =\ \frac{F_2}{M_2}\ =\ \gamma\cdot{}\left[-\frac{M_S}{|\overrightarrow{x_2}|^3}\cdot{}\overrightarrow{x_1}+\frac{M_1}{|\overrightarrow{x_2-x_1}|^3}\cdot{}(\overrightarrow{x_2-x_1})\right]
[/tex]
and i need to solve it numerically using the RUNGE-KUTTA method, however I have no clue how to do that . Please save me!
[tex]
\ x_1''\ =\ \frac{F_1}{M_1}\ =\ \gamma\cdot{}\left[-\,\frac{M_S}{|\overrightarrow{x_1}|^3}\cdot{}\overrightarrow{x_2}+\frac{M_2}{|\overrightarrow{x_2-x_1}|^3}\cdot{}(\overrightarrow{x_2-x_1})\right]
[/tex]
[tex]
\ x_2''\ =\ \frac{F_2}{M_2}\ =\ \gamma\cdot{}\left[-\frac{M_S}{|\overrightarrow{x_2}|^3}\cdot{}\overrightarrow{x_1}+\frac{M_1}{|\overrightarrow{x_2-x_1}|^3}\cdot{}(\overrightarrow{x_2-x_1})\right]
[/tex]
and i need to solve it numerically using the RUNGE-KUTTA method, however I have no clue how to do that . Please save me!
Last edited: